Kilka zadań z ciągów liczbowych

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
Awatar użytkownika
Magenta
Użytkownik
Użytkownik
Posty: 84
Rejestracja: 8 paź 2007, o 18:48
Płeć: Kobieta
Lokalizacja: Zza siedmiu mórz
Podziękował: 14 razy

Kilka zadań z ciągów liczbowych

Post autor: Magenta » 22 paź 2007, o 19:57

I W danym ciągu nieskończonym \(\displaystyle{ (a_{n})}\) skreślono wszystkie wyrazy o numerach parzystych. Pozostałe wyrazy są kolejnymi wyrazami ciągu \(\displaystyle{ (b_{n})}\). Z tych informacji wynika, że:
a) \(\displaystyle{ b_{100}=a_{199}}\),
b) jeśli\(\displaystyle{ (a_{n)}}\) jest ciągiem rosnącym, to \(\displaystyle{ b_{n}}\) jest też ciagiem rosnącym,
c) jeśli\(\displaystyle{ (a_{n)}}\) jest ciągiem arytmetycznym o róznicy r, to \(\displaystyle{ (b_{n})}\) jest ciągiem arytmetycznym to różnicy 2r.

II Ciąg \(\displaystyle{ (b_{n})}\) określony wzorem \(\displaystyle{ b_{n}=\frac{\sqrt{n}-2}{\sqrt{n}}}\)ma 50 wyrazów. Wobec tego:
a) tylko 4 wyrazy ciągu\(\displaystyle{ b_{n}}\) są liczbami ujemnymi,
b) jednym z wyrazow ciągu jest liczba 3,
c) wśród wszystkich wyrazów ciągu dokładnie 43 wyrazy są liczbami niewymiernymi.

III Jeśli ciąg \(\displaystyle{ (a_{n})}\) ma tę właśność, że dla każdego dodatniego n prawdziwa jest nierówność \(\displaystyle{ \frac{a_{n}+1}{a_{n}}>\sqrt{2}}\), to:
a) \(\displaystyle{ a_{n}}\) jest ciągiem rosnącym wtedy i tylko wtedy, gdy wszystkie wyrazy ciągu są liczbami dodatnimi,
b) wszystkie wyrazy ciągu są liczbami dodatnimi.
c) \(\displaystyle{ a_{25}>a_{23}}\).

Jak zauważyliście nie jedna, ani też wszystkie odpowiedzi muszą być prawidłowe. Kto potrafiłby wykazać, że np. wszystkie informacje podane w pierwszym zadaniu są prawdziwe? W jaki sposób należy to zrobić? Jeśli wiecie, pomóżcie, ja niestety nie wiem.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Tomasz Rużycki
Gość Specjalny
Gość Specjalny
Posty: 2970
Rejestracja: 8 paź 2004, o 17:16
Płeć: Mężczyzna
Lokalizacja: Suchedniów/Kraków
Podziękował: 4 razy
Pomógł: 293 razy

Kilka zadań z ciągów liczbowych

Post autor: Tomasz Rużycki » 22 paź 2007, o 20:05

A mozesz przedstawic swoje proby rozwiazania tych zadan i sprecyzowac, gdzie konkretnie jest problem?

Awatar użytkownika
Magenta
Użytkownik
Użytkownik
Posty: 84
Rejestracja: 8 paź 2007, o 18:48
Płeć: Kobieta
Lokalizacja: Zza siedmiu mórz
Podziękował: 14 razy

Kilka zadań z ciągów liczbowych

Post autor: Magenta » 27 paź 2007, o 22:02

W pierwszym przypadku? Zapisanie ciągu.

Awatar użytkownika
Tomasz Rużycki
Gość Specjalny
Gość Specjalny
Posty: 2970
Rejestracja: 8 paź 2004, o 17:16
Płeć: Mężczyzna
Lokalizacja: Suchedniów/Kraków
Podziękował: 4 razy
Pomógł: 293 razy

Kilka zadań z ciągów liczbowych

Post autor: Tomasz Rużycki » 27 paź 2007, o 22:44

Hm, no to jak masz ciag \(\displaystyle{ \{a_n\}_{n=1}^{\infty}}\), to po skresleniu wyrazow o parzystych wskaznikach dostajesz jego podciag, tj. \(\displaystyle{ \{a_{2n+1}\}_{n=0}^{\infty}}\).

ODPOWIEDZ