Strona 1 z 1

Szereg z arcusem

: 2 maja 2022, o 17:36
autor: mol_ksiazkowy
Udowodnić, że \(\displaystyle{ \sum_{n=1}^{\infty} \arctg( \frac{2}{n^2} ) = \frac{3\pi}{4} }\)

Re: Szereg z arcusem

: 2 maja 2022, o 19:15
autor: Janusz Tracz
pomysł:    

Re: Szereg z arcusem

: 2 maja 2022, o 20:17
autor: janusz47
\(\displaystyle{ \sum_{n=1}^{\infty}\arctg\left(\frac{2}{n^2}\right): }\)

\(\displaystyle{ \tg(\alpha - \beta) = \frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)} }\)

\(\displaystyle{ \arctg\left(\tg(\alpha - \beta)\right) = \arctg\left(\frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)}\right) }\)

\(\displaystyle{ \alpha - \beta = \arctg\left(\frac{\tg(\alpha) - \tg(\beta)}{1 + \tg(\alpha)\tg(\beta)}\right) }\)

\(\displaystyle{ \frac{2}{n^2} = \frac{(n+1)-(n-1)}{1 + (n+1)(n-1)} }\)

Niech

\(\displaystyle{ \tg(\alpha) = n+1, \ \ \tg(\beta) = n-1. }\)

Stąd

\(\displaystyle{ \alpha = \arctg(n+1), \ \ \beta = \arctg(n-1) }\)

\(\displaystyle{ s = \sum_{n=1}^{\infty}\arctg\left(\frac{2}{n^2}\right) = \sum_{n=1}^{\infty}[\arctg(n+1) - \arctg(n-1)] = \arctg(2)-\arctg(0) + \arctg(3)-\arctg(1)+ \arctg(4)-\arctg(2)+ \arctg(5) - \arctg(3)+\arctg(6)-\arctg(4)+...+ \arctg(n+1)-\arctg(n-1)+... = -\arctg(0) -\arctg(1) + \arctg(n-1) + \arctg(n+1) +... }\)

\(\displaystyle{ s = \lim_{n \to \infty} [\arctg(0)- \arctg(1) +\arctg(n-1)+\arctg(n+1)] = 0 -\frac{\pi}{4}+ \frac{\pi}{2}+ \frac{\pi}{2} = \frac{3\pi}{4}.}\)