Strona 1 z 1
Zbieżność całki.
: 15 lut 2022, o 17:17
autor: gr4vity
Ma ktoś pomysł jak zbadać zbieżność tej całki?
\(\displaystyle{ \int_{0}^{1} \frac{e^{x}-1}{ \sqrt[3]{x^{5}} }dx }\)
Wolfram pokazuje, że ta całka jest zbieżna, natomiast jak rozbijemy tą całkę na dwie:
\(\displaystyle{ \int_{0}^{1} \frac{e^{x}}{ \sqrt[3]{x^{5}} }dx -\int_{0}^{1} \frac{1}{ \sqrt[3]{x^{5}} }dx }\)
To przecież druga jest oczywiście rozbieżna, dlaczego zatem cała jest zbieżna?
Jak pokazać zbieżność tej całki w takim układzie?
Re: Zbieżność całki.
: 15 lut 2022, o 17:27
autor: Jan Kraszewski
gr4vity pisze: 15 lut 2022, o 17:17Wolfram pokazuje, że ta całka jest zbieżna, natomiast jak rozbijemy tą całkę na dwie:
\(\displaystyle{ \int_{0}^{1} \frac{e^{x}}{ \sqrt[3]{x^{5}} }dx -\int_{0}^{1} \frac{1}{ \sqrt[3]{x^{5}} }dx }\)
A kto Ci pozwolił rozbić ją na dwie całki?
JK
Re: Zbieżność całki.
: 15 lut 2022, o 18:46
autor: a4karo
Wsk: \(\displaystyle{ \frac{e^x-1}{x}\to 1}\) gdy \(\displaystyle{ x\to 0}\)
Re: Zbieżność całki.
: 16 lut 2022, o 00:16
autor: gr4vity
Jan Kraszewski pisze: 15 lut 2022, o 17:27
gr4vity pisze: 15 lut 2022, o 17:17Wolfram pokazuje, że ta całka jest zbieżna, natomiast jak rozbijemy tą całkę na dwie:
\(\displaystyle{ \int_{0}^{1} \frac{e^{x}}{ \sqrt[3]{x^{5}} }dx -\int_{0}^{1} \frac{1}{ \sqrt[3]{x^{5}} }dx }\)
A kto Ci pozwolił rozbić ją na dwie całki?
JK
Zgoda, trochę tego nie przemyślałem.
a4karo pisze: 15 lut 2022, o 18:46
Wsk:
\(\displaystyle{ \frac{e^x-1}{x}\to 1}\) gdy
\(\displaystyle{ x\to 0}\)
Mógłbym poprosić trochę więcej, nie za bardzo wiem jak wykorzystać tę wskazówkę :/
Re: Zbieżność całki.
: 16 lut 2022, o 01:31
autor: a4karo
Zastanów się dlaczego podejrzewasz te całkę o rozbieżność.
Re: Zbieżność całki.
: 16 lut 2022, o 02:34
autor: gr4vity
Nie podejrzewam tej całki o zbieżność, ja po prostu wiem, że jest zbieżna ponieważ to sprawdziłem w wolframie...
Kombinowałem na różne sposoby.
Póki co na moim etapie edukacji dysponuje takimi narzędziami do rozwiązywania tego typu zadań:
- Najnormalniejsze w świecie obliczenie całki oznaczonej (tutaj odpada ponieważ, z moimi umiejętnościami nie jestem w stanie obliczyć tej całki)
- Kryterium ilorazowe i porównawcze. (Kombinowałem na różne sposoby bez skutku).
Jeżeli należy to zadanie rozwiązać jakąkolwiek inną metodą... to proszę oszczędź mi czasu bo najzwyczajniej w świecie tego nie wymyślę.
Re: Zbieżność całki.
: 16 lut 2022, o 04:22
autor: Premislav
Z kryterium ilorazowego spokojnie idzie, można wziąć funkcję \(\displaystyle{ g(x)=x^{-\frac 2 3}}\). Generalnie problem jest w okolicach zera, więc najprościoej jest znaleźć taką funkcję potęgową \(\displaystyle{ g}\), że \(\displaystyle{ \lim_{x\to 0^{+}}\frac{\frac{e^x-1}{\sqrt[3]{x^5}}}{g(x)}=1}\). A granica wskazana przez a4karo miała Ci w tym pomóc.
Dodano po 12 minutach 53 sekundach:
A jak ktoś koniecznie chce z kryterium porównawczego, to można wyciągnąć z kapelusza nierówność \(\displaystyle{ e^x-1\le 2x, 0\le x\le 1}\). Mamy bowiem:
\(\displaystyle{ e^x-1=\sum_{n=1}^{+\infty}\frac{x^n}{n!}\le \sum_{n=1}^{+\infty}\frac{x^n}{2^{n-1}}=2\sum_{n=1}^{+\infty}\left(\frac{x}{2}\right)^n=\frac{x}{1-\frac{x}{2}}\le 2x}\).
Re: Zbieżność całki.
: 16 lut 2022, o 08:56
autor: a4karo
To takie dosyć standardowe rozumowanie: funkcja \(\displaystyle{ \frac{e^x-1}{x}}\) jest ciągła na odcinku `(0,1]` i ma granicę w zerze, a zatem jest ograniczona (powiedzmy że przez `M`).
Zatem
\(\displaystyle{ \int_0^1 \frac{e^x-1}{\sqrt[3]{x^5}}dx=\int_0^1\frac{e^x-1}{x}\frac{dx}{\sqrt[3]{x^2}}\leq M\int_0^1\frac{dx}{\sqrt[3]{x^2}}}\)
a tę ostatnią całkę po prostu wyliczysz.