Udowodnij że suma n ...

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
Hac_mi;
Użytkownik
Użytkownik
Posty: 106
Rejestracja: 10 kwie 2007, o 20:25
Płeć: Mężczyzna
Lokalizacja: hmmm
Podziękował: 12 razy
Pomógł: 6 razy

Udowodnij że suma n ...

Post autor: Hac_mi; » 20 paź 2007, o 20:26

Udowodnij że suma n pierwszych wyrazów ciągu geometrycznego o pierwszym wyrazie a i o ilorazie q (q!=0) równa jest:

\(\displaystyle{ \frac{a(1-q^{n})}{1 - q}}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Szemek
Gość Specjalny
Gość Specjalny
Posty: 4819
Rejestracja: 10 paź 2006, o 23:03
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 43 razy
Pomógł: 1407 razy

Udowodnij że suma n ...

Post autor: Szemek » 20 paź 2007, o 20:55

\(\displaystyle{ \bigwedge_{\limits{n N_+}} S_n=\frac{a_1(1-q^n)}{1-q}}\)
Stosujemy zasadę indukcji matematycznej:
Dowód:
\(\displaystyle{ 1^{\circ}}\)
n=1
\(\displaystyle{ S_1=a_1\frac{1-q^1}{1-q}=a_1}\); z drugiej strony zgodnie z określeniem \(\displaystyle{ S_1}\) mamy też \(\displaystyle{ S_1=a_1}\)

\(\displaystyle{ 2^{\circ}}\)
\(\displaystyle{ \bigwedge_{\limits{k N_+}}[S_k=a_1 \frac{1-q^k}{1-q} S_{k+1}=a_1 \frac{1-q^{k+1}}{1-q} ]}\)
Dowód:
\(\displaystyle{ S_{k+1}=a_1+a_2+a_3+\ldots +a_k+a_{k+1}=a_1 \frac{1-q^k}{1-q}+a_{k+1}=a_1 \frac{1-q^k}{1-q}+a_1 q^k=a_1\cdot \frac{1-q^k+q^k-q^{k+1}}{1-q}=a_1 \frac{1-q^{k+1}}{1-q}}\)
Na mocy zasady indukcji matematycznej z punktów \(\displaystyle{ 1^{\circ}}\) i \(\displaystyle{ 2^{\circ}}\) wynika, że wzór \(\displaystyle{ S_n=\frac{a_1(1-q^n)}{1-q}}\) jest prawdziwy dla każdego \(\displaystyle{ n N_+,q 1}\).

Jeśli q=1, to ciąg geometryczny jest stały, zatem
\(\displaystyle{ S_n=\underbrace{a_1+a_1+a_1+ \ldots + a_1}_{n}=n a_1}\)

ODPOWIEDZ