żS-4, od: robin5hood, zadanie 3

Liga
Gość Specjalny
Gość Specjalny
Posty: 168
Rejestracja: 29 wrz 2006, o 18:17
Płeć: Mężczyzna
Lokalizacja: Forum Matematyka.pl

żS-4, od: robin5hood, zadanie 3

Post autor: Liga » 19 paź 2007, o 21:30

robin5hood pisze:\(\displaystyle{ \sqrt[3]{x+1}+\sqrt[3]{x-1}=x\sqrt[3]{2}}\)
podnosimy obie strony do sześcianu
\(\displaystyle{ x+1+x-1+3\sqrt[3]{x^2-1}(\sqrt[3]{x+1}+\sqrt[3]{x-1})=2x^3}\)
\(\displaystyle{ x+1+x-1+3\sqrt[3]{x^2-1}x\sqrt[3]{2}=2x^3}\)
zauważmy, że x=0 jest rozwiązaniem równania
zatem mamy
\(\displaystyle{ 2+3\sqrt[3]{2(x^2-1)}=2x^2}\)
\(\displaystyle{ 3\sqrt[3]{2(x^2-1)}=2(x^2-1)}\)
zauwazmy że x=1 i x=-1 są rozwiązaniami równania
zatem
\(\displaystyle{ 3*2^{-\frac{2}{3}}=(x^2-1)^{\frac{2}{3}}}\)
\(\displaystyle{ x^2=\frac{\sqrt[3]{9}}{2}+1}\)
zatem równanie ma rozwiązania x=0 lub x=1 lub x=-1 lub \(\displaystyle{ x=\sqrt{\frac{\sqrt[3]{9}}{2}+1}\) lub \(\displaystyle{ x=-\sqrt{\frac{\sqrt[3]{9}}{2}+1}\)
Ostatnio zmieniony 23 paź 2007, o 17:27 przez Liga, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

żS-4, od: robin5hood, zadanie 3

Post autor: scyth » 21 paź 2007, o 23:09

można było rozwiązanie ładniej przedstawić, ale mimo to 5/5

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6933
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2618 razy
Pomógł: 687 razy

żS-4, od: robin5hood, zadanie 3

Post autor: mol_ksiazkowy » 22 paź 2007, o 00:54

ok

ODPOWIEDZ