Strona 1 z 1

Liczba ujemna do ułamkowej potęgi - jakie jest rozwiązanie

: 28 lip 2021, o 22:21
autor: WojciechPa
Cześć,
przychodzę z następującym pytaniem, jakie będzie rozwiązanie dla ujemnej liczby podniesionej do ułamkowej potęgi. Dla przykładu \(\displaystyle{ (-8)^{ \frac{1}{3} } }\).
Wynik będzie -2 czy "niezdefiniowany". Czy można przekształcić \(\displaystyle{ (-8)^{ \frac{1}{3} } }\) w postać \(\displaystyle{ \sqrt[3]{-8} }\) i wziąć wynik -2? Ponieważ wpisując \(\displaystyle{ (-8)^{ \frac{1}{3} } }\) do Photomath dostaję odpowiedź "niezdefiniowany".
Dlaczego tak się dzieje? Jakie jest prawidłowe rozwiązanie dla \(\displaystyle{ (-8)^{ \frac{1}{3} } }\) ?

Z góry dzięki za pomoc :)

Re: Liczba ujemna do ułamkowej potęgi - jakie jest rozwiązanie

: 29 lip 2021, o 10:07
autor: kmarciniak1
W ogólności taka operacja może nas wyprowadzić do świata liczb zespolonych a program pewnie szuka tylko rzeczywistych rozwiązań. Widocznie akurat ten z automatu odrzuca tego typu wyrażenie symboliczne. Ale oczywiście w tym konkretnym wypadku rzeczywiście można to wyrażenie uprościć co też zrobiłeś.

Re: Liczba ujemna do ułamkowej potęgi - jakie jest rozwiązanie

: 29 lip 2021, o 11:56
autor: a4karo
Generalnie, dziedziną funkcji potęgowej `x^a` jest zbiór liczb dodatnich (gdy `a<0`) lub nieujemnych (`a>0`).

Dla niektórych wykłądników (np. dla całkowitych) można ją rozszerzyć na druga połówkę osi liczbowej ale np. w przypadku ułamkowych wykładników pojawiają się dziwne zjawiska. Np.
\(\displaystyle{ (-8)^{1/3}=-2, }\) ale \(\displaystyle{ (-8)^{2/6}=\sqrt{\left((-8)^{1/3}\right)^2}=2}\)

Dodano po 1 godzinie 31 minutach 56 sekundach:
Dla całkowitych wykładników kłopoty są takie same
\(\displaystyle{ (-1)^1=-1}\), ale \(\displaystyle{ (-1)^1=(-1)^{2/2}=\sqrt{(-1)^2}=1}\)

Wniosek jest taki, że dla ujemnych argumentów nie zachodzą prawa potęgowana, które są prawdziwe dla argumentów dodatnich.

Dodano po 5 minutach 18 sekundach:
Oczywiście można się tu bawić tak:
\(\displaystyle{ (-1)^1=(-1)^{2/2}=\left(\sqrt{-1}\right)^2=i^2=-1}\) i dostać poprawny wynik, ale uzasadnienie dlaczego \(\displaystyle{ x^{a/b}=\left({x^a}\right)^{1/b}}\) jest lepsze lub gorsze niż \(\displaystyle{ x^{a/b}=\left(x^{1/b}\right)^a}\) jest bardziej filozofią niż matematyką