Zadanie: Róznica symetryczna zbiorów.

Algebra zbiorów. Relacje, funkcje, iloczyny kartezjańskie... Nieskończoność, liczby kardynalne... Aksjomatyka.
scorpi
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 18 paź 2007, o 19:13
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2 razy

Zadanie: Róznica symetryczna zbiorów.

Post autor: scorpi » 18 paź 2007, o 19:26

Witam!! Mam problem z zadaniem z teori mnogośc.
definicja różnicy symetrycznej dla zbiorów:
\(\displaystyle{ A-B=(A\cup B)\backslash (A\cap B)}\)
to to samo co \(\displaystyle{ (A\backslash B)\cup (B\backslash A)}\)

Treść zadania:
udowodnić że: \(\displaystyle{ A-(B-C)=(A-B)-C}\)

Zadanie co prawda udało mi sie zrobić, ale zajeło mi to kilka stron. Jeżeli ktoś potrafi to rozwiązać w kilku linijkach to byłbym wdzięczny za podanie rozwiązania albo naprowadzenia do niego

*Kasia
Gość Specjalny
Gość Specjalny
Posty: 2826
Rejestracja: 30 gru 2006, o 20:38
Płeć: Kobieta
Lokalizacja: Lublin/warszawa
Podziękował: 62 razy
Pomógł: 482 razy

Zadanie: Róznica symetryczna zbiorów.

Post autor: *Kasia » 18 paź 2007, o 19:37

Za bardzo zasugerowałam się oznaczeniami, jakie miałam na lekcji...
Ostatnio zmieniony 19 paź 2007, o 12:38 przez *Kasia, łącznie zmieniany 1 raz.

Jan Kraszewski
Administrator
Administrator
Posty: 27305
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Zadanie: Róznica symetryczna zbiorów.

Post autor: Jan Kraszewski » 18 paź 2007, o 20:27

*Kasia pisze:Jesteś pewny, że dobrze przepisałeś polecenie? Bo ja wcześniej udowodnię, że to zdanie jest fałszywe...
To Ci się raczej nie uda, scorpi pyta się o własność prawdziwą, czyli o łączność różnicy symetrycznej.

scorpi: Tak, to można zrobić dużo krócej niż Ty zrobiłeś, tylko nie należy próbować przekształceń na zbiorach... Robi się to tak.
Po pierwsze różnicę symetryczną zbiorów \(\displaystyle{ A}\) i \(\displaystyle{ B}\) oznaczę sobie \(\displaystyle{ A\bigtriangleup B}\) (to jest oznaczenie standardowe).
Po drugie, zdefiniuję nowy spójnik logiczny \(\displaystyle{ \triangledown}\): \(\displaystyle{ p\triangledown q\iff \neg(p \Leftrightarrow q)}\).
Po trzecie, zrobię tabelkę dla tego spójnika.
Po czwarte, zauważę, że \(\displaystyle{ x\in A\bigtriangleup B\iff x\in A\ \triangledown\ x\in B}\).
Po piąte, udowodnię metodą 0-1, że spójnik \(\displaystyle{ \triangledown}\) jest łączny.
Po szóste, zauważę, że to już koniec.
W sumie zmieszczę się na pewno na jednej stronie, a i rozumowanie będzie przejrzystsze.
JK

scorpi
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 18 paź 2007, o 19:13
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2 razy

Zadanie: Róznica symetryczna zbiorów.

Post autor: scorpi » 18 paź 2007, o 21:47

Wielkie dzięki! faktycznie zmieściło sie na jednej stronie

ODPOWIEDZ