Strona 1 z 1

produkt/punkty skupienia

: 9 gru 2020, o 11:05
autor: Elek112
Udowonić, że \(\displaystyle{ (A \times B) ^{d} = (A ^{d} \times \bar{B}) \cup (\bar{A} \times B ^{d} )}\)

Wiem, że takie zadania robi się poprzez wykazanie zawiernia w jedną jak i drugą stronę, ale czy taki dowód jak ja tutaj zaprezentowałem jest w pełni poprawny?

\(\displaystyle{ (A ^{d} \times \bar{B}) =(\bar{A} \times \bar{B}) \setminus (A ^{i} \times \bar{B}) =(\bar{A} \times \bar{B}) \setminus ((A ^{i} \times B ^{d}) \cup (A ^{i} \times B ^{i})) }\)

\(\displaystyle{ (\bar{A} \times B ^{d} ) =(\bar{A} \times \bar{B}) \setminus (\bar{A} \times B ^{i} ) = (\bar{A} \times \bar{B}) \setminus ((A ^{d} \times B ^{i}) \cup (A ^{i} \times B ^{i}))}\)

\(\displaystyle{ (A ^{d} \times \bar{B}) \cup (\bar{A} \times B ^{d} ) = (\bar{A} \times \bar{B}) \setminus (A ^{i} \times B ^{i}) = (A \times B) ^{d}}\)

gdzie \(\displaystyle{ C ^{d} }\) to punkty skupienia zbioru \(\displaystyle{ C}\) a \(\displaystyle{ C ^{i}}\) punkty izolowane zbioru \(\displaystyle{ C}\)

Proszę o potwierdzenie czy taki dowód jest poprawny, a jeżeli nie to jak to poprawić lub jak się zabrać za to poprawnie