cukierki

Problemy matematyczne "ubrane" w życiowe problemy.
jadzia!!!
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 16 paź 2007, o 16:06
Płeć: Kobieta
Lokalizacja: Wrocław
Podziękował: 3 razy

cukierki

Post autor: jadzia!!! » 16 paź 2007, o 18:33

W wazie leżą cukierki miętowe i malinowe. Cukierków miętowych jest o ponad 20 sztuk więcej niż malinowych. Jeden cukierek miętowy waży 2 g, malinowy 3 g. Z wazy wzięto 15 cukierków jednego rodzaju, których waga stanowiła jedną piątą wagi wszystkjich cukierków. Potem wzięto jescze 20 cukierków malinowych. Ich waga okazała się równa wadze cukierków pozostałych w wazie. Ile było cukierków każdego rodzaju?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Symetralna
Użytkownik
Użytkownik
Posty: 183
Rejestracja: 26 wrz 2007, o 10:07
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Pomógł: 56 razy

cukierki

Post autor: Symetralna » 17 paź 2007, o 09:16

x- liczba cukierków miętowych
y- liczba cukierków malinowych
w- waga wszystkich cukierków

Z treści zadania wynika, że waga 20 cukierków malinowych stanowi 0,4 wagi wszystkich cukierków.
zatem: 0,4 w = 20*3
czyli wszystkie cukierki ważą 150 g

A waga wcześniej zabranych cukierków stanowi 0,2 wagi całości, więc cukierki te ważą 30 g. Stąd wniosek, że zabrano cukierki miętowe (2*15).

Waga całości to 150 więc:
2x + 3y = 150
Poza tym
x > y + 20 więc
2(y + 20) + 3y

ODPOWIEDZ