Dowód na zbiorach domkniętych/otwartych rozłącznych
: 5 lis 2020, o 23:34
Niech \(\displaystyle{ A}\) i \(\displaystyle{ B}\) będą zbiorami rozłącznymi w przestrzeni topologicznej (\(\displaystyle{ X,T)}\). Wykaż, że jeśli zbiór \(\displaystyle{ A}\) jest otwarty w \(\displaystyle{ X}\) to \(\displaystyle{ \overline{A} \cap int\overline{B} = \emptyset }\)
Robię to w taki sposób:
Załóżmy przeciwnie, że istnieje \(\displaystyle{ x \in \overline{A} \cap int\overline{B}}\)
zatem istnieje również \(\displaystyle{ U}\) \(\displaystyle{ (x \in U}\)) takie, że \(\displaystyle{ U \subset \overline{B}}\)
skoro \(\displaystyle{ x \in \overline{A}}\) to \(\displaystyle{ A \cap U \neq \emptyset}\)
Mamy zatem zbiór otwarty, który w całości zwiera się w \(\displaystyle{ \overline{B}}\) i ma niepuste przecięcie z \(\displaystyle{ A}\).
Ponieważ \(\displaystyle{ A}\) jest otwarty to \(\displaystyle{ A \cap U \subset \overline{B}}\) również jest zbiorem otwartym
( i \(\displaystyle{ A \cap U \cap \overline{B}}\) też jest zbiorem otwartym)
w konsekwencji \(\displaystyle{ (A \cap U) \cap B \neq \emptyset }\)
czyli \(\displaystyle{ A \cap B \neq \emptyset}\)
Sprzeczność
Czy ktoś może ocenić czy to zadanie jest dobrze sformułowane? Jeżeli nie to gdzie i jak miałbym poprawić ten dowód?
Robię to w taki sposób:
Załóżmy przeciwnie, że istnieje \(\displaystyle{ x \in \overline{A} \cap int\overline{B}}\)
zatem istnieje również \(\displaystyle{ U}\) \(\displaystyle{ (x \in U}\)) takie, że \(\displaystyle{ U \subset \overline{B}}\)
skoro \(\displaystyle{ x \in \overline{A}}\) to \(\displaystyle{ A \cap U \neq \emptyset}\)
Mamy zatem zbiór otwarty, który w całości zwiera się w \(\displaystyle{ \overline{B}}\) i ma niepuste przecięcie z \(\displaystyle{ A}\).
Ponieważ \(\displaystyle{ A}\) jest otwarty to \(\displaystyle{ A \cap U \subset \overline{B}}\) również jest zbiorem otwartym
( i \(\displaystyle{ A \cap U \cap \overline{B}}\) też jest zbiorem otwartym)
w konsekwencji \(\displaystyle{ (A \cap U) \cap B \neq \emptyset }\)
czyli \(\displaystyle{ A \cap B \neq \emptyset}\)
Sprzeczność
Czy ktoś może ocenić czy to zadanie jest dobrze sformułowane? Jeżeli nie to gdzie i jak miałbym poprawić ten dowód?