Strona 1 z 1

dowód zbieżności

: 3 lis 2020, o 18:57
autor: Adam99
Szeregi \(\displaystyle{ \sum_{n=1}^{ \infty } \min(a _{n} , b _{n})}\) oraz \(\displaystyle{ \sum_{n=1}^{ \infty } \max(a _{n} , b _{n} )}\) są zbieżne. Pokazać, że szeregi \(\displaystyle{ \sum_{n=1}^{ \infty } a _{n}}\) oraz \(\displaystyle{ \sum_{n=1}^{ \infty } b _{n}}\) są zbieżne.

Będę wdzięczny za podpowiedź.

Re: dowód zbieżności

: 3 lis 2020, o 19:11
autor: Dasio11
Wykorzystaj warunek Cauchy'ego.

Re: dowód zbieżności

: 3 lis 2020, o 19:43
autor: Adam99
Nie mogę wpaść na to, jak wykorzystać tu Cauchy'ego. Próbowałem kryterium porównawczym, ale zostaje wtedy przypadek, gdy wyrazy są ujemne...

Re: dowód zbieżności

: 3 lis 2020, o 20:10
autor: Dasio11
A jaką znasz wersję kryterium porównawczego? Ono też zadziała.

Re: dowód zbieżności

: 3 lis 2020, o 22:39
autor: Adam99
Uczono mnie, że kryterium porównawcze można stosować tylko do szeregów o wyrazach nieujemnych (przynajmniej od pewnego miejsca), a tego treść zadania niestety nie gwarantuje :(

Re: dowód zbieżności

: 8 sty 2021, o 16:22
autor: Thingoln
Wiem, że odkopuję temat, ale może skorzystam na tym i ja, i ktoś czytający go w przyszłości. :)
Czy wystarczy wnioskować w ten sposób?

Mamy z definicji \(\displaystyle{ \min{\{a_n, b_n\}} \le a_n, b_n \le \max{\{a_n, b_n \}}}\) dla dowolnego \(\displaystyle{ n \in \mathbb{N}}\). Niech \(\displaystyle{ N \in \mathbb{N}}\). Wtedy
\(\displaystyle{ \sum_{n=1}^{N} \min{\{a_n, b_n\}} \le \sum_{n=1}^{N} a_n \le \sum_{n=1}^{N} \max{\{a_n, b_n \}}}\)
i analogicznie dla \(\displaystyle{ (b_n)}\). Jako, że oba szeregi \(\displaystyle{ \sum_{n=1}^{\infty} \min{\{a_n, b_n \}}}\) i \(\displaystyle{ \sum_{n=1}^{\infty} \max{\{a_n, b_n \}}}\) są zbieżne, to z kryterium porównawczego wynika, że także \(\displaystyle{ \sum_{n=1}^{\infty} a_n}\) oraz \(\displaystyle{ \sum_{n=1}^{\infty} b_n}\) są zbieżne. To kończy dowód.

Re: dowód zbieżności

: 8 sty 2021, o 20:24
autor: Dasio11
Na jaką wersję kryterium porównawczego się powołujesz?