Strona 1 z 1

Rysowanie wykresów z modułami

: 31 paź 2020, o 18:41
autor: Vidar
Witam,

Nie do końca jestem pewien w jaki sposób rozwiązywać przykłady z dwoma modułami. Najbardziej chodzi mi o znaki \(\displaystyle{ \wedge}\) oraz \(\displaystyle{ \vee }\). W któryc konkretnie miejscach powinny stać.

a) \(\displaystyle{ \left| x+2 \right| + 2\left| y \right| < 6 }\)

b) \(\displaystyle{ \left| \left| x \right| - 2\left| y+1 \right|\right| > 3 }\)

a)
Przekształcam w taki sposób, aby wyznaczyć moduł z y.

\(\displaystyle{ \left| y \right|< - \frac{\left| x+2 \right|}{2} +3 }\)

Najpierw zajmuje się warunkami dla \(\displaystyle{ \left| x+2\right| }\)

\(\displaystyle{ y < - \frac{1}{2}x + 2 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ y < \frac{1}{2}x + 4 }\)

Moim zdaniem między tymi wyrazami będzie koniunkcja, zawsze uczyłem się że powinienem również zmienić znak nierówności w drugą stronę, ale tutaj tego nie robię, ponieważ wynik wyjdzie mi wtedy błędny, dlaczego?

b) Czy ten drugi moduł jest tutaj potrzebny z jednego równania wychodzą mi same koniunkcje a w drugim przypadku same alternatywy, wynikiem jest ta ów alternatywa.

\(\displaystyle{ \left| x \right| - 2\left| y+1 \right| > 3}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \left| x \right| - 2\left| y+1 \right| < -3}\)

W pierwszym przypadku otrzymuje równanie:

\(\displaystyle{ \left| y+1 \right|< x-3 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ \left| y+1 \right|< -x-3 }\)

Czy powinienem tutaj zmienić znak nierówności w drugim przypadku?

Analogicznie dla drugiego przypadku wychodzą mi same alternatywy, czy to jest dobrze i proszę o pomoc z tymi koniunkcjami i alternatywami.

Dziękuję

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 19:41
autor: Jan Kraszewski
Vidar pisze: 31 paź 2020, o 18:41a)
Przekształcam w taki sposób, aby wyznaczyć moduł z y.

\(\displaystyle{ \left| y \right|< - \frac{\left| x+2 \right|}{2} +3 }\)

Najpierw zajmuje się warunkami dla \(\displaystyle{ \left| x+2\right| }\)

\(\displaystyle{ y < - \frac{1}{2}x + 2 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ y < \frac{1}{2}x + 4 }\)
Ale jak się tymi warunkami zajmujesz? Bo ja nie bardzo wiem, skąd wyczarowałeś coś takiego.

JK

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 19:46
autor: Vidar
Jan Kraszewski pisze: 31 paź 2020, o 19:41
Vidar pisze: 31 paź 2020, o 18:41a)
Przekształcam w taki sposób, aby wyznaczyć moduł z y.

\(\displaystyle{ \left| y \right|< - \frac{\left| x+2 \right|}{2} +3 }\)

Najpierw zajmuje się warunkami dla \(\displaystyle{ \left| x+2\right| }\)

\(\displaystyle{ y < - \frac{1}{2}x + 2 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ y < \frac{1}{2}x + 4 }\)
Ale jak się tymi warunkami zajmujesz? Bo ja nie bardzo wiem, skąd wyczarowałeś coś takiego.

JK

Fakt,
Raz wstawiam \(\displaystyle{ x + 2 }\)a za drugim razem\(\displaystyle{ -x - 2 }\)

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 19:50
autor: Jan Kraszewski
Przede wszystkim, jak rozpatrujesz przypadki, to trzeba wyraźnie zaznaczyć, jakie w każdym przypadku są warunki. Po drugie, w jakiś sposób zniknąłeś moduł przy \(\displaystyle{ y}\).

JK

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:01
autor: Vidar
Ahh, na kartce mam :)

Tak zdaje sobie sprawę i warunki mam rozpisane pierwszy dla \(\displaystyle{ x \ge -2 }\) drugi \(\displaystyle{ x < -2 }\)

Powinny byc tam moduły przy y.

\(\displaystyle{ \left| y\right| < - \frac{1}{2}x + 2 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ \left| y \right| < \frac{1}{2}x + 4 }\)


Wszystko to wiem, tylko nie jestem pewien tych koniunkcji oraz alternatywy.

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:05
autor: a4karo
To nie próbuj zgadywać ani przypominać sobie magicznych regułek, tylko weż to na rozum.

Tam nie ma spójnika logicznego tylko dwa zupełnie różne zadania:
jeżeli `x\ge -2` to ....
jeżeli \(\displaystyle{ x>-2}\) to ...

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:09
autor: Vidar
Niestety, ale nie wiem do końća jak to zrobić jeśli ktos bylby w stanie chociaż podpowiedziec cokolwiek byloby swietnie, dzieki :)

Dodano po 1 minucie 24 sekundach:
Teraz jak będę rozpisywać moduł z y też nie będzie zadnego spójnika logicznego tylko 2 oddzielne zadania?
Dlaczego?

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:21
autor: a4karo
Spróbuj to zrozumieć. Przemyśl to..
Moduł `|y|` daje dwa przypadki. Razem masz cztery przypadki i w każdym z nich odpowiednio musisz pozbyć się modułu zmieniając znak, lub nie.

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:24
autor: Jan Kraszewski
Vidar pisze: 31 paź 2020, o 20:01\(\displaystyle{ \left| y\right| < - \frac{1}{2}x + 2 }\) \(\displaystyle{ \wedge }\) \(\displaystyle{ \left| y \right| < \frac{1}{2}x + 4 }\)

Wszystko to wiem, tylko nie jestem pewien tych koniunkcji oraz alternatywy.
Źle. A te "koniunkcje i alternatywy" to istotnie wygląda u Ciebie na magiczne formułki.
Vidar pisze: 31 paź 2020, o 20:09 Teraz jak będę rozpisywać moduł z y też nie będzie zadnego spójnika logicznego tylko 2 oddzielne zadania?
A rozumiesz, o co chodzi w tym "rozpisywaniu modułów"? Bo traktowanie rady a4karo jago magicznego przepisu nic Ci nie da. To nie chodzi o to, czy tam jest spójnik, czy nie, to jest wtórne. Chodzi o to, czy rozumiesz, co się tam dzieje.

Rozpatrywanie przypadków to zawsze alternatywa: zachodzi przypadek 1 lub przypadek 2 lub przypadek 3 itd. Jeżeli teraz w danym przypadku rozpatrujesz inne warunki, które mają zajść równocześnie, to oczywiście masz koniunkcję.

JK

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 20:35
autor: Vidar
Tak, ale w niektórych przykładach zamiast alternatywy używamy koniunkcji jako części wspólnej dwóch przypadków.
Prawda, nie do końca w takim razie to rozumiem. Spróbuję rozpisać sobie to jeszcze raz, ale w sumie dalej do końca nie wiem jak to dobrze robić. Nie rozumiem w takim razie kiedy jest koniunkcja alternatywa, korzystalem z 'magicznego' sposobu.

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 21:00
autor: Jan Kraszewski
Vidar pisze: 31 paź 2020, o 20:35 Tak, ale w niektórych przykładach zamiast alternatywy używamy koniunkcji jako części wspólnej dwóch przypadków.
Co wskazuje, że zapewne nie rozumiesz, co robisz.

Przypadki zawsze są alternatywą. Natomiast w ramach przypadków możesz mieć podprzypadki (i tak będzie tutaj - masz dwa przypadki ze względu na \(\displaystyle{ x}\), a w każdym dwa podprzypadki ze względu na \(\displaystyle{ y}\)) i wtedy może pojawić się koniunkcja (warunek z przypadku 1 i warunek z podprzypadku 1.1), ale to inna kwestia.

JK

Re: Rysowanie wykresów z modułami

: 31 paź 2020, o 21:17
autor: a4karo
To co pisze JK to oczywista prawda. Rozpatrywanie przypadków to zawsze alternatywa. Chodzi tylko o to,żebyś zapis `y<0 vee y\ge 0` traktował jak dwa różne przypadki i dla każdego przeprowadził osobne rozumowanie

Innymi słowy, w przykładzie pierwszym masz
`(y<0 vee y\ge 0) \wedge (x<-2 \vee x\ge -2) \Leftrightarrow (y<0 \wedge x<-2) \vee (y<0 \wedge x\ge -2) \vee (y\ge 0 \wedge x<-2) \vee (y\ge 0 \wedge x\ge -2)`
i każdy z tych przypadków trzeba osobno rozważyć

Re: Rysowanie wykresów z modułami

: 1 lis 2020, o 00:04
autor: Vidar
Dziekuje