Ciąg geometryczny - udowadnianie

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
Awatar użytkownika
Magenta
Użytkownik
Użytkownik
Posty: 84
Rejestracja: 8 paź 2007, o 18:48
Płeć: Kobieta
Lokalizacja: Zza siedmiu mórz
Podziękował: 14 razy

Ciąg geometryczny - udowadnianie

Post autor: Magenta » 14 paź 2007, o 21:56

Ciąg \(\displaystyle{ (a_{n})}\) jest geometryczny. Wykaż, że ciąg \(\displaystyle{ (b_{n})}\) określony wzorem \(\displaystyle{ b_{n} = a_{n} + a_{n+1}}\) jest również ciągiem geometrycznym. Jaki jest iloraz tego ciągu?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

soku11
Użytkownik
Użytkownik
Posty: 6607
Rejestracja: 16 sty 2007, o 19:42
Płeć: Mężczyzna
Podziękował: 119 razy
Pomógł: 1822 razy

Ciąg geometryczny - udowadnianie

Post autor: soku11 » 14 paź 2007, o 22:12

Niech \(\displaystyle{ a_n=a_1\cdot q^{n-1}\\}\)

Liczymy \(\displaystyle{ b_n}\):
\(\displaystyle{ b_n=a_1q^{n-1}+a_1q^{n}=a_1q^{n-1}+a_1q^{n-1}q=
a_1q^{n-1}(1+q)=a_1(1+q)q^{n-1}\\
b_{n+1}=a_1(1+q)q^n\\
\frac{b_{n+1}}{b_{n}}=\frac{a_1(1+q)q^n}{a_1(1+q)q^{n-1}}=
\frac{q^{n-1}q}{q^{n-1}}=q}\)


Z czego widac, ze stosunek wynosi q, czyli jest to ciag geometryczny. POZDRO

Awatar użytkownika
Magenta
Użytkownik
Użytkownik
Posty: 84
Rejestracja: 8 paź 2007, o 18:48
Płeć: Kobieta
Lokalizacja: Zza siedmiu mórz
Podziękował: 14 razy

Ciąg geometryczny - udowadnianie

Post autor: Magenta » 14 paź 2007, o 22:15

Dziękuję za rozwiązanie.

ODPOWIEDZ