Układ równań z trzema niewiadomymi i równaniem kwadrat

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Rev
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 14 paź 2007, o 15:21
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 1 raz

Układ równań z trzema niewiadomymi i równaniem kwadrat

Post autor: Rev » 14 paź 2007, o 15:32

Z treści zadania wyszedł mi taki układ równań:
\(\displaystyle{ \begin{cases}a+b+c=8\\
a^2 + b^2 + c^2 = 30\\
99a-99c + 396 = 0\end{cases}}\)

a, b i c to liczby naturalne.
I nie za bardzo wiem / gubię się obliczając ten układ.
Zadanie z działu równań kwadratowych. Mathematica obliczając go za mnie podaje dwa rozwiązania, jedno faktycznie dobre (a=1, b=2, c=5, więc układ jest poprawny), drugie nie spełnia dziedziny (i tutaj już problem, bo nigdy nie rozwiązywałem układów równań w których może wychodzić parę rozwiązań).
Mógłby mi ktoś krok po kroku pomóc jak się z tym uporać?

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6168
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2551 razy
Pomógł: 673 razy

Układ równań z trzema niewiadomymi i równaniem kwadrat

Post autor: mol_ksiazkowy » 14 paź 2007, o 16:18

Podziel tzreci przez 99 i masz a-c+4 =0, tj c=a+4, z pierwszego b= 4-2a, wstaw do do drugiego i masz równanie kwadratowe ze zmienna a, delta it d.

Rev
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 14 paź 2007, o 15:21
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 1 raz

Układ równań z trzema niewiadomymi i równaniem kwadrat

Post autor: Rev » 14 paź 2007, o 16:28

Wielkie dzięki .

ODPOWIEDZ