Uogólnienie metryki

Własności przestrzeni; metryczność, zwartość, spójność... Przekształcenia i deformacje... Teoria wymiaru... słowem - topologia.
login1977
Użytkownik
Użytkownik
Posty: 92
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 1 raz

Uogólnienie metryki

Post autor: login1977 » 26 mar 2020, o 13:56

Czy można coś o takich warunkach:
\(\displaystyle{ d\left( A,A\right) \ge 0 }\)
\(\displaystyle{ d\left( A,B\right) \ge d\left( B,A\right) }\)
\(\displaystyle{ (d\left( A,C\right) \le d\left( A,B\right)+d\left( B,C\right))\vee ( d\left( A,C\right) \ge d\left( A,B\right)+d\left( B,C\right) )
}\)
uznać za uogólnienie metryki?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Jan Kraszewski
Administrator
Administrator
Posty: 26169
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4374 razy

Re: Uogólnienie metryki

Post autor: Jan Kraszewski » 26 mar 2020, o 14:10

Ale jaki miałby być cel tego "uogólnienia"?
login1977 pisze:
26 mar 2020, o 13:56
\(\displaystyle{ (d\left( A,C\right) \le d\left( A,B\right)+d\left( B,C\right))\vee ( d\left( A,C\right) \ge d\left( A,B\right)+d\left( B,C\right) ) }\)
Mógłbyś wytłumaczyć sens tego "warunku", który jest zawsze spełniony?

JK

login1977
Użytkownik
Użytkownik
Posty: 92
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 1 raz

Re: Uogólnienie metryki

Post autor: login1977 » 26 mar 2020, o 14:22

\(\displaystyle{ d}\) może spełniać warunek trójkąta lub może go nie spełniać tzn. mogą istnieć np. drogi między punktami \(\displaystyle{ A}\) i \(\displaystyle{ C}\) które są dłuższe od dróg prowadzących od \(\displaystyle{ A}\) do \(\displaystyle{ C}\) przez punkt \(\displaystyle{ B}\).

Jan Kraszewski
Administrator
Administrator
Posty: 26169
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4374 razy

Re: Uogólnienie metryki

Post autor: Jan Kraszewski » 26 mar 2020, o 15:17

login1977 pisze:
26 mar 2020, o 14:22
\(\displaystyle{ d}\) może spełniać warunek trójkąta lub może go nie spełniać
Ale zdajesz sobie sprawę, że w powyższej wersji to jest bez sensu: Jaka będzie jutro pogoda? Będzie padać albo nie będzie padać... Każda funkcja spełnia powyższy warunek.
login1977 pisze:
26 mar 2020, o 14:22
tzn. mogą istnieć np. drogi między punktami \(\displaystyle{ A}\) i \(\displaystyle{ C}\) które są dłuższe od dróg prowadzących od \(\displaystyle{ A}\) do \(\displaystyle{ C}\) przez punkt \(\displaystyle{ B}\).
Ale wiesz, że kwantyfikatory są po to, żeby ich używać? Proponuję zatem, żebyś jeszcze raz sformułował warunki z pierwszego posta, ale tym razem porządnie.

Nie odpowiedziałeś też na pytanie o cel.

JK

a4karo
Użytkownik
Użytkownik
Posty: 17670
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2980 razy

Re: Uogólnienie metryki

Post autor: a4karo » 26 mar 2020, o 16:00

A z drugiego warunku wynika, że `d(A,B)=d(B,A)`, więc co on ma dać?

Jan Kraszewski
Administrator
Administrator
Posty: 26169
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4374 razy

Re: Uogólnienie metryki

Post autor: Jan Kraszewski » 26 mar 2020, o 16:27

a4karo pisze:
26 mar 2020, o 16:00
A z drugiego warunku wynika, że `d(A,B)=d(B,A)`
Tylko pod warunkiem, że tam jest kwantyfikator ogólny...

JK

login1977
Użytkownik
Użytkownik
Posty: 92
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 1 raz

Re: Uogólnienie metryki

Post autor: login1977 » 26 mar 2020, o 16:28

\(\displaystyle{ \left( \forall A\right) }\)\(\displaystyle{ \left(\exists d\right) }\) \(\displaystyle{ d\left( A,A\right) \ge 0 }\)
\(\displaystyle{ \left( \forall A,B \right)\left( \exists d _{1}, d _{2} \right) d _{1} \left( A,B\right) \ge d _{2} \left( B,A\right) }\)
\(\displaystyle{ \left( \forall d\right)\left(\forall A,B,C\right)\left( \exists d_{1} \right)\left( d\left( A,C\right) \le d\left( A,B\right)+d\left( B,C\right)\right) \Rightarrow \left( d _{1}\left( A,C\right) \ge d_{1}\left( A,B\right)+d _{1} \left( B,C\right)\right) }\)

Jan Kraszewski
Administrator
Administrator
Posty: 26169
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4374 razy

Re: Uogólnienie metryki

Post autor: Jan Kraszewski » 26 mar 2020, o 16:35

No cóż, nie jest lepiej, jest nawet gorzej. Obawiam się, że trochę przespałeś "Wstęp do matematyki".
login1977 pisze:
26 mar 2020, o 16:28
\(\displaystyle{ \left( \forall A\right) }\)\(\displaystyle{ \left(\exists d\right) }\) \(\displaystyle{ d\left( A,A\right) \ge 0 }\)
\(\displaystyle{ \left( \forall A,B \right)\left( \exists d _{1}, d _{2} \right) d _{1} \left( A,B\right) \ge d _{2} \left( B,A\right) }\)
\(\displaystyle{ \left( \forall d\right)\left(\forall A,B,C\right)\left( \exists d_{1} \right)\left( d\left( A,C\right) \le d\left( A,B\right)+d\left( B,C\right)\right) \Rightarrow \left( d _{1}\left( A,C\right) \ge d_{1}\left( A,B\right)+d _{1} \left( B,C\right)\right) }\)
Czy zdajesz sobie sprawę, że to nie jest definicja czegokolwiek? To są trzy zdania (nieznanej prawdziwości - dopóki nie ustalimy zakresu kwantyfikatorów), więc nie mogą nic definiować. Jeżeli chcesz zdefiniować, kiedy funkcja \(\displaystyle{ d:X\to \RR}\) jest login1977-metryką, to musisz podać warunki na to, będące formułami, w których \(\displaystyle{ d}\) jest jedyną zmienną wolną.

JK

PS
Nawiasem mówiąc, trzecie wyrażenie nie jest zdaniem, bo ma błędną składnię (jest formułą o zmiennych wolnych \(\displaystyle{ d_1,A,B,C...}\)).

login1977
Użytkownik
Użytkownik
Posty: 92
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 1 raz

Re: Uogólnienie metryki

Post autor: login1977 » 26 mar 2020, o 16:38

Przepraszam za zawracanie głowy.

ODPOWIEDZ