Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
Awatar użytkownika
trzebasieuczyc
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 12 wrz 2019, o 21:25
Płeć: Mężczyzna

Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: trzebasieuczyc » 13 wrz 2019, o 11:44

Witam,
Mam takie polecenie:

"Wykazać, że rozwiązaniem równania różniczkowego:
\(\displaystyle{ y' = -2xy^{2}}\)
jest każda z poniższych funkcji:
a) \(\displaystyle{ y = 0}\)
b) \(\displaystyle{ y = \frac{1}{x^{2}}}\)
c) \(\displaystyle{ y = \frac{1}{x^{2}+1}}\)
d) \(\displaystyle{ y = \frac{1}{x^{2}-1}}\)
Narysować odpowiednie krzywe całkowe."

O ile po rozwiązaniu równania różniczkowego wychodzi mi, że \(\displaystyle{ y = \frac{1}{x^{2}}}\), a po podstawieniu, że \(\displaystyle{ 0}\) też jest rozwiązaniem to jednak nie wiem jak sprawdzić, że odpowiedzi c) i d) też są rozwiązaniami jako, że wychodzi np. w przypadku c), że \(\displaystyle{ \arctan x = \frac{-2x}{x^{2}+1} }\). Dodatkowo nie wiem jak narysować odpowiednie krzywe całkowe (wykres jakiej funkcji to będzie czy tej \(\displaystyle{ y' = -2xy^{2}}\) czy np. tej po rozwiązaniu czyli \(\displaystyle{ y = \frac{1}{x^{2}}}\).

Jan Kraszewski
Administrator
Administrator
Posty: 24946
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: Jan Kraszewski » 13 wrz 2019, o 12:19

trzebasieuczyc pisze:
13 wrz 2019, o 11:44
O ile po rozwiązaniu równania różniczkowego wychodzi mi, że \(\displaystyle{ y = \frac{1}{x^{2}}}\),
No to chyba zapomniałeś o stałej całkowania.

JK

Awatar użytkownika
Gosda
Użytkownik
Użytkownik
Posty: 78
Rejestracja: 29 cze 2019, o 19:46
Płeć: Mężczyzna
Lokalizacja: Oulu

Re: Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: Gosda » 13 wrz 2019, o 13:29

Żeby wykazać, że coś jest rozwiązaniem równania całkowego, trzeba to coś wstawić (w Twoim przypadku) w miejsce \(\displaystyle{ y}\) i sprawdzić, czy równość zachodzi, czy nie. Nie trzeba go rozwiązywać.

Awatar użytkownika
trzebasieuczyc
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 12 wrz 2019, o 21:25
Płeć: Mężczyzna

Re: Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: trzebasieuczyc » 13 wrz 2019, o 14:04

No dobrze, w takim razie podstawiam:
c)
\(\displaystyle{ \displaystyle{y = \frac{1}{x^{2} + 1}\\
y' = -2xy^{2}}}\)

Czyli: \(\displaystyle{ \displaystyle{ \arctan x + C = \frac{-2x}{x^{4} + 2x^{2} +1}}}\)
d)
\(\displaystyle{ \displaystyle{y = \frac{1}{x^{2} - 1}\\
y' = -2xy^{2}}}\)

Czyli: \(\displaystyle{ \displaystyle{ \frac{1}{2}\ln\frac{x-1}{x+1} + C = \frac{-2x}{x^{4} - 2x^{2} +1}}}\)

Czy to są tożsamości?

Jan Kraszewski
Administrator
Administrator
Posty: 24946
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław

Re: Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: Jan Kraszewski » 13 wrz 2019, o 17:57

trzebasieuczyc pisze:
13 wrz 2019, o 14:04
c)
\(\displaystyle{ \displaystyle{y = \frac{1}{x^{2} + 1}\\
y' = -2xy^{2}}}\)

Czyli: \(\displaystyle{ \displaystyle{ \arctan x + C = \frac{-2x}{x^{4} + 2x^{2} +1}}}\)
Obawiam się, że mylisz różniczkowanie z całkowaniem.
trzebasieuczyc pisze:
13 wrz 2019, o 14:04
d)
\(\displaystyle{ \displaystyle{y = \frac{1}{x^{2} - 1}\\
y' = -2xy^{2}}}\)

Czyli: \(\displaystyle{ \displaystyle{ \frac{1}{2}\ln\frac{x-1}{x+1} + C = \frac{-2x}{x^{4} - 2x^{2} +1}}}\)
Obawiam się, że mylisz różniczkowanie z całkowaniem.

JK

Awatar użytkownika
trzebasieuczyc
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 12 wrz 2019, o 21:25
Płeć: Mężczyzna

Re: Wykazać, że rozwiązaniem równania różniczkowego jest + krzywe całkowe

Post autor: trzebasieuczyc » 14 wrz 2019, o 12:26

Faktycznie, nie wiem co mi przyszło do głowy, że trzeba podstawiać pod lewą stronę i całkować. Masakra.
Dziękuję za cenną wskazówkę i pozdrawiam :)

ODPOWIEDZ