żS-3, od: luka52, zadanie 3

Liga
Gość Specjalny
Gość Specjalny
Posty: 168
Rejestracja: 29 wrz 2006, o 18:17
Płeć: Mężczyzna
Lokalizacja: Forum Matematyka.pl

żS-3, od: luka52, zadanie 3

Post autor: Liga » 10 paź 2007, o 19:42

[quote="luka52"]Niech \(\displaystyle{ l}\) oznacza tworzącą stożka, \(\displaystyle{ h}\) jego wysokość, a \(\displaystyle{ r}\) promień podstawy.
Powyższe wielkości są ze sobą powiązane wzorem:
\(\displaystyle{ l^2 = r^2 + h^2 \quad (*)}\)
Objętość lejka wynosi:
\(\displaystyle{ V = \frac{1}{3} \pi r^2 h = \frac{\pi}{3} (l^2 - h^2) h}\)
gdzie \(\displaystyle{ r^2}\) wyliczyliśmy z równania (*).
Obierając teraz funkcję V argumentu h - zależność objętości od wysokości leja, szukamy dla jakiego argumentu funkcja V osiąga ekstremum (a konkretniej maksimum).
Obliczamy pochodną V':
\(\displaystyle{ \frac{\mbox{d}V}{\mbox{d}h} = \frac{\pi}{3} \left( (l^2 - h^2) h \right)' = \frac{\pi}{3} \left( l^2 - 3h^2 \right)}\)
Wyznaczamy punkty stajonarne:
\(\displaystyle{ V' = 0 \iff h = \pm \frac{l \sqrt{3}}{3}}\)
Ponieważ sens ma jedynie takie h, że h>0 i w punkcie \(\displaystyle{ h = \frac{l \sqrt{3}}{3}}\) pochodna zmienia znak z + na -, znajdujemy że szukana wysokość stożka winna wynosić:
\(\displaystyle{ h = \frac{l \sqrt{3}}{3} = \frac{2 \sqrt{3}}{3} \approx 1.15 \ (\mbox{dm})}\)[/quote]
Ostatnio zmieniony 17 paź 2007, o 00:15 przez Liga, łącznie zmieniany 1 raz.

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6177
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2552 razy
Pomógł: 673 razy

żS-3, od: luka52, zadanie 3

Post autor: mol_ksiazkowy » 10 paź 2007, o 19:50

nop wszystko fajnie, i super, ale brak dziedziny D, funkcji V i odnotowania, ze znaleziony punkt ekstremalny do niej nalezy, wg mnie za to 1 pkt trza zabrac!

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

żS-3, od: luka52, zadanie 3

Post autor: scyth » 10 paź 2007, o 23:23

ja bym nie obcinał

choć po namyśle może i masz rację i należy się -1 pkt - co na to bolo i Tristan?

3/4

Awatar użytkownika
Tristan
Gość Specjalny
Gość Specjalny
Posty: 2357
Rejestracja: 24 kwie 2005, o 14:28
Płeć: Mężczyzna
Podziękował: 27 razy
Pomógł: 556 razy

żS-3, od: luka52, zadanie 3

Post autor: Tristan » 13 paź 2007, o 13:57

Uważam, że należy się 3/4.

ODPOWIEDZ