Testowanie hipotezy.

Procesy stochastyczne. Sposoby racjonalizowania wielkich ilości informacji. Matematyka w naukach społecznych.
Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 21 razy

Testowanie hipotezy.

Post autor: Raziel95 » 4 cze 2019, o 19:39

W wyniku pomiarów maksymalnej pojemności \(\displaystyle{ 20}\) kondensatorów otrzymano \(\displaystyle{ \overline{x}=4.5pF}\)Zakładając, że maksymalna pojemność kondensatora jest zmienna losowa o rozkładzie normalnym \(\displaystyle{ N(m;0.2)}\),na poziomie istotności \(\displaystyle{ \alpha=0.05}\). Zweryfikować hipotezę \(\displaystyle{ m=4.6pF}\). Przyjąć hipotezę alternatywną jednostronną. Obliczyć wartość p.

\(\displaystyle{ X~ N(m;0.2)}\)

\(\displaystyle{ \overline{x}=4.5pF}\)

\(\displaystyle{ X _{1}, ... , X _{20}}\)
\(\displaystyle{ \alpha=0.05}\)
\(\displaystyle{ \sigma ^{2} = 0.2}\)

\(\displaystyle{ H _{0} : m = 4.6pF}\)
\(\displaystyle{ H _{A} : m < 4.6pF}\)

Statystyka Testowa:

\(\displaystyle{ T= \frac{\overline{x} - m}{\sigma}* \sqrt{n} = \frac{-0.1}{0.44}*4.47 = -1.01}\)

Przedział krytyczny:

\(\displaystyle{ P _{H _{0} } (T<-Z _{\alpha} ) =0.05}\)
\(\displaystyle{ \Phi(-Z _{\alpha}) =0.05}\)
\(\displaystyle{ \Phi(Z _{\alpha}) = 1 - 0.05}\)
\(\displaystyle{ \Phi(Z _{\alpha}) = 0.95}\)
\(\displaystyle{ Z _{\alpha}=1.64}\)

\(\displaystyle{ K(-\infty;-1.64)}\)

\(\displaystyle{ T \not\in K}\)

\(\displaystyle{ H _{0}}\) jest prawdziwe.

Wartość \(\displaystyle{ p}\).

\(\displaystyle{ p(T \in (-1.01;+\infty))=1-\Phi(-1.01)=1-0.1562=0.8438}\)

Prawidłowo rozwiązane?
Jak policzyć moc?

janusz47
Użytkownik
Użytkownik
Posty: 4969
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Pomógł: 1094 razy

Testowanie hipotezy.

Post autor: janusz47 » 4 cze 2019, o 20:23

Moc testu

\(\displaystyle{ \beta(m) = \Pr(\overline{X}< m_{0}- \sigma\cdot z_{1-\alpha}/\sqrt{n}) = \phi \left(\frac{m_{0}- m}{\sigma /\sqrt{n}} - z_{1-\alpha}\right).}\)

Proszę obliczyć wartość funkcji mocy testu dla danych z zadania i podać interpretację statystyczną tej wartości.

Zadanie wygląd na poprawnie rozwiązane.

Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 21 razy

Re: Testowanie hipotezy.

Post autor: Raziel95 » 4 cze 2019, o 20:46

\(\displaystyle{ \beta(m) = \Pr(\overline{X}< m_{0}- \sigma\cdot z_{1-\alpha}/\sqrt{n}) = \phi \left(\frac{m_{0}- m}{\sigma /\sqrt{n}} - z_{1-\alpha}\right) = \phi \left( \frac{4.6-4.6}{0.44 / 4.47} + 1.37 \right) = \phi\left( 1.37 \right) = 0.9147}\)

Co w przypadku, gdy \(\displaystyle{ \sigma}\) nie jest znane.

Jest:
\(\displaystyle{ \Pr(\overline{X}< m_{0}- \sigma\cdot z_{1-\alpha}/\sqrt{n})=\phi \left(\frac{m_{0}- m}{\sigma /\sqrt{n}} - z_{1-\alpha}\right)}\)

Ponieważ:
\(\displaystyle{ H _{A} : m < 4.6pF}\)
Jakby, było gdyby:
\(\displaystyle{ H _{A} : m > 4.6pF}\)
lub
\(\displaystyle{ H _{A} : m \neq 4.6pF}\)

janusz47
Użytkownik
Użytkownik
Posty: 4969
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Pomógł: 1094 razy

Testowanie hipotezy.

Post autor: janusz47 » 4 cze 2019, o 21:07

Proszę poprawnie podstawić dane, wynikające z treści zadania do \(\displaystyle{ \beta(m).}\)

\(\displaystyle{ m_{0} = 4,6 pF.}\)

\(\displaystyle{ m = 4,5 PF.}\)

\(\displaystyle{ \sqrt{n} = \sqrt{20}.}\)

\(\displaystyle{ z_{1-\alpha}\approx 2,58.}\)

Gdy \(\displaystyle{ \sigma}\) nie jest znane, stosujemy statystykę Studenta i podstawiamy odchylenie standardowe z próby.

Proszę poprawić zbiór krytyczny testu

\(\displaystyle{ \mathcal{K} = (-\infty, -2,58 \rangle .}\)

Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 21 razy

Re: Testowanie hipotezy.

Post autor: Raziel95 » 4 cze 2019, o 21:23

Skoro:
\(\displaystyle{ 1-\alpha = 0.95}\)

to \(\displaystyle{ Z _{1-\alpha} = Z _{0.95} = 1.64}\)

Skąd się wzięło:

\(\displaystyle{ Z _{1-\alpha}=2.58}\) ?

janusz47
Użytkownik
Użytkownik
Posty: 4969
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Pomógł: 1094 razy

Re: Testowanie hipotezy.

Post autor: janusz47 » 4 cze 2019, o 21:56

Kwantyl rzędu 0,95 standaryzowanego rozkładu normalnego

Program R

Kod: Zaznacz cały

> qnorm(0.95)
[1] 1.644854
To ja jestem ślepy.

Zbiór krytycznytestu poprawnie wyznaczony.

To pozostała wartość funkcji testu:

\(\displaystyle{ \beta(4.5) \approx \phi \ \left( \frac{(4,6 -4,5)\sqrt{20}}{0,2} -1,65 \right) \approx \phi(0,5861) \approx 0,7211.}\)

Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 21 razy

Re: Testowanie hipotezy.

Post autor: Raziel95 » 4 cze 2019, o 22:08

janusz47 pisze: To pozostała wartość funkcji testu:

\(\displaystyle{ \beta(4.5) \approx \phi \ \left( \frac{(4,6 -4,5)\sqrt{20}}{0,2} -1,65 \right) \approx \phi(0,5861) \approx 0,7211.}\)
Skoro \(\displaystyle{ \sigma ^{2} =0.2}\)
To \(\displaystyle{ \sigma = 0.44}\)

To czy w mianowniki nie powinno być \(\displaystyle{ 0.44}\) ?

Czyli

\(\displaystyle{ \beta(4.5) \approx \phi \ \left( \frac{(4,6 -4,5)\sqrt{20}}{0,44} -1,65 \right)\approx \phi(-0,6336)\approx 0.2643}\)

Moc testu liczy się zawsze tak samo? Bez względy na wybraną hipotezę? Co zrobić przy \(\displaystyle{ H _{0} \neq H _{A}}\)

janusz47
Użytkownik
Użytkownik
Posty: 4969
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Pomógł: 1094 razy

Testowanie hipotezy.

Post autor: janusz47 » 4 cze 2019, o 22:37

Przyjmujemy\(\displaystyle{ \sigma = 0,2}\) i rozkład \(\displaystyle{ \mathcal{N}(m, \sigma) = \mathcal{N}(m; 0,2)}\)

W przypadku\(\displaystyle{ m_{0}\neq m}\) określamy dwustronny obszar krytyczny testu, wyznaczając kwantyl rzędu \(\displaystyle{ z_{(1-\frac{\alpha}{2})}.}\) standaryzowanego rozkładu normalnego.

Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 21 razy

Re: Testowanie hipotezy.

Post autor: Raziel95 » 4 cze 2019, o 23:06

Inne zadanie.

\(\displaystyle{ X \sim \mathcal N(m,1)}\)

\(\displaystyle{ n=16}\)

\(\displaystyle{ \overline{x}=1.15}\)

\(\displaystyle{ \alpha = 0.01}\)

\(\displaystyle{ \sigma = 1}\)


\(\displaystyle{ H _{0} : m=1 \\ H _{A} : m>1}\)

\(\displaystyle{ T= \frac{\overline{x} - m}{\sigma} \cdot \sqrt{n} = \frac{1.15 - 1}{1} \cdot 4 = 0.6}\)

Przedział krytyczny:
\(\displaystyle{ \Phi(Z _{\alpha} ) =0.01 \\ \Phi(Z _{\alpha} ) =1 - 0.01 \\ \Phi(Z _{\alpha} ) = 0.99 \\ Z _{\alpha} = 2.33 \\ K(2.33 ; \infty)}\)

\(\displaystyle{ T \not\in K}\)
\(\displaystyle{ H _{0}}\) jest prawdziwe.

Wartość \(\displaystyle{ p}\)

\(\displaystyle{ p(T\in(0.6; \infty))= 1-\Phi(0.6)=0.2553}\)

Moc testu dla \(\displaystyle{ m=2}\) (tak było w poleceniu).

\(\displaystyle{ \beta (2)= (\frac{1.15 - 2}{1} \cdot 4 - 2.33)=}\) Czy tu nie powinno być \(\displaystyle{ +2.33}\)?
Ostatnio zmieniony 5 cze 2019, o 10:11 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Symbol mnożenia to \cdot.

janusz47
Użytkownik
Użytkownik
Posty: 4969
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Pomógł: 1094 razy

Re: Testowanie hipotezy.

Post autor: janusz47 » 5 cze 2019, o 09:01

Powinno być \(\displaystyle{ + z_{0.01}=+2.33.}\)

Zbiór krytyczny uwzględniamy z domknięciem \(\displaystyle{ \langle}\)

ODPOWIEDZ