Skonstruuj przedział ufności

Procesy stochastyczne. Sposoby racjonalizowania wielkich ilości informacji. Matematyka w naukach społecznych.
max123321
Użytkownik
Użytkownik
Posty: 2380
Rejestracja: 26 maja 2016, o 01:25
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 681 razy

Skonstruuj przedział ufności

Post autor: max123321 » 25 maja 2019, o 18:38

W zadaniu rozważany jest model liniowy
\(\displaystyle{ Y=X\beta+\varepsilon}\)
,gdzie \(\displaystyle{ Y \in \RR^n}\) jest zmienną objaśnianą, \(\displaystyle{ X \in \RR^{n \times p}}\) jest macierzą planu, \(\displaystyle{ \beta \in \RR^p}\) wektorem nieznanych współczynników oraz \(\displaystyle{ \varepsilon \in \RR^n}\) wektorem nieskorelowanych błędów, czyli \(\displaystyle{ \EE \varepsilon=0}\), \(\displaystyle{ Var \varepsilon=\sigma^2 Id}\).

Estymator \(\displaystyle{ \beta}\) metodą najmniejszych kwadratów jest postaci:
\(\displaystyle{ \overline{\beta}=(X^TX)^{-1}X^TY}\)

Niech \(\displaystyle{ n>p}\) oraz niech \(\displaystyle{ \varepsilon}\) ma rozkład \(\displaystyle{ N(0,\sigma^2Id_n)}\). Niech \(\displaystyle{ x_*}\) będzie nową obserwacją oraz \(\displaystyle{ y_*=x_*^T\beta+\varepsilon_*}\)
,gdzie \(\displaystyle{ \varepsilon}\) ma rozkład normalny \(\displaystyle{ N(0,\sigma^2)}\) niezależny od \(\displaystyle{ \varepsilon}\). Skonstruuj przedział ufności dla predykcji \(\displaystyle{ \hat{y}_*=x_*^T\hat{\beta}}\)

Jak to zrobić?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

ODPOWIEDZ