Obliczenie całki

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
aneta909811
Użytkownik
Użytkownik
Posty: 119
Rejestracja: 1 lut 2015, o 19:20
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 23 razy

Obliczenie całki

Post autor: aneta909811 » 15 maja 2019, o 20:36

Jak obliczyć takiego byczka \(\displaystyle{ \int x \frac{ \sqrt{x-2} }{ \sqrt{4-x} } \mbox{d}x}\)
Próbowałam przez części, ale jakoś nie wychodzi...
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6726
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1217 razy

Re: Obliczenie całki

Post autor: mariuszm » 15 maja 2019, o 20:38

Spróbuj podstawienia

\(\displaystyle{ t = \frac{ \sqrt{x-2} }{ \sqrt{4-x} }}\)

chyba że musisz przez części

\(\displaystyle{ \int x \frac{ \sqrt{x-2} }{ \sqrt{4-x} } \mbox{d}x\\ t=\frac{ \sqrt{x-2} }{ \sqrt{4-x} }\\ t^2=\frac{x-2}{4-x}\\ t^2=\frac{x-4+2}{4-x}\\ t^2=-1+\frac{2}{4-x}\\ t^2+1=\frac{2}{4-x}\\ \frac{t^2+1}{2}= \frac{1}{4-x}\\ \frac{2}{t^2+1} =4-x\\ x-4=-\frac{2}{t^2+1}\\ x = 4 -\frac{2}{t^2+1}\\ x=\frac{4t^2+4-2}{t^2+1}\\ x= \frac{4t^2+2}{t^2+1} \\ \mbox{d}x =\left( -2\right)\left( -1\right) \left( t^2+1\right)^{-2} \cdot 2t \mbox{d}t\\ \mbox{d}x = \frac{4t}{\left( t^2+1\right)^2 } \mbox{d}t\\ \int{ \frac{4t^2+2}{t^2+1} \cdot t \cdot \frac{4t}{\left( t^2+1\right)^2 } \mbox{d}t} \\ 8 \int{ \frac{t^2\left( 2t^2+1\right) }{\left( t^2+1\right)^3 } \mbox{d}t } \\}\)

i teraz albo wydzielenie części wymiernej sposobem Ostrogradskiego
albo zastosowanie wzoru redukcyjnego

\(\displaystyle{ 8\int{\frac{2t^4+t^2}{\left( t^2+1\right)^3 }\mbox{d}t}=8\int{\frac{\left(2t^4+4t^2+2 \right)-3\left( t^2+1\right)+1 }{\left( t^2+1\right)^3 } \mbox{d}t}\\ =16\int{ \frac{ \mbox{d}t }{t^2+1} }-24 \int{\frac{ \mbox{d}t}{\left( t^2+1\right)^2 }} +8 \int{ \frac{ \mbox{d}t}{\left( t^2+1\right)^3 } }}\)

Wzór redukcyjny

\(\displaystyle{ \int{\frac{ \mbox{d}x }{\left( x^2+1\right)^n }}=\int{\frac{1+x^2-x^2}{\left( x^2+1\right)^n } \mbox{d}x }\\ =\int{ \frac{1+x^2}{\left( x^2+1\right)^n } \mbox{d}x }-\int{ \frac{x^2}{\left( x^2+1\right)^n } \mbox{d}x }\\ =\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }-\int{ \frac{x^2}{\left( x^2+1\right)^n } \mbox{d}x }\\ =\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }+\int{ \frac{x}{\left( 2n-2\right) } \cdot \frac{\left( -1\right)\left( 2n-2\right)x }{\left( x^2+1\right)^n } \mbox{d}x }\\ =\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }+\frac{1}{2n-2} \frac{x}{\left( x^2+1\right)^{n-1} } -\frac{1}{2n-2}\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }\\ =\frac{1}{2n-2} \frac{x}{\left( x^2+1\right)^{n-1} }+ \frac{2n-3}{2n-2}\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }\\ \int{\frac{ \mbox{d}x }{\left( x^2+1\right)^n }}=\frac{1}{2n-2} \frac{x}{\left( x^2+1\right)^{n-1} }+ \frac{2n-3}{2n-2}\int{ \frac{ \mbox{d}x }{\left( x^2+1\right)^{n-1} } }\\}\)

ODPOWIEDZ