Norma funkcjonału liniowego

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
Dejvid96
Użytkownik
Użytkownik
Posty: 36
Rejestracja: 2 lis 2018, o 12:46
Płeć: Mężczyzna
Lokalizacja: Gdynia
Podziękował: 4 razy

Norma funkcjonału liniowego

Post autor: Dejvid96 » 10 maja 2019, o 14:46

Znajdź normę funkcjonału liniowego
\(\displaystyle{ f:L^p(-1,1)\rightarrow\mathbb{R},p>1, f(u)=\int_0^1tu(t)dt}\) dla \(\displaystyle{ p=\frac{3}{2}}\).

Nie wiem do końca jak zakończyć zadanie. Mam coś takiego:
\(\displaystyle{ |f(u)|=|\int_0^1tu(t)dt|\le \int_0^1|t||u(t)|dt\le(\int_0^1|t|^\frac{3}{2}dt)^\frac{2}{3}\cdot(\int_0^1|u(t)|^3dt)^\frac{1}{3}=L||u||_{\frac{3}{2}}}\)
Korzystam z nierówności Holdera dla całek i pierwsza z całek jest do wyliczenia i jest ona stałą Lipschitza. Ale nie wiem jak sprawdzić czy ona jest optymalną stałą i co z faktem, że całka jest w granicach od 0 do 1.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5970
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

Re: Norma funkcjonału liniowego

Post autor: bartek118 » 14 maja 2019, o 20:46

Musiałbyś wskazać funkcję, dla której zajdzie równość i będzie zerowa poniżej \(\displaystyle{ 0}\). Pytanie - kiedy zachodzi równość w nierówności Holdera?

ODPOWIEDZ