równanie kwadratowe z niewiadoma x

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Tinia
Użytkownik
Użytkownik
Posty: 216
Rejestracja: 20 wrz 2006, o 16:43
Płeć: Kobieta
Lokalizacja: Wrocław
Podziękował: 14 razy
Pomógł: 2 razy

równanie kwadratowe z niewiadoma x

Post autor: Tinia » 9 paź 2007, o 18:04

Dane jest równanie (m-1)x�+m√7x+m�+m+1=0 z niewiadomą x. Sporzadź wykres funkcji
m-> f(m) gdzie f(m) oznacza liczbe pierwiastków danego równania.

Wykres sadze, ze bede potrafiła narysować:P...ale mam kłopot z tym równaniem, ciagle mi wychodzi jakis wielomian, zapisałam juz z 10 kartek w zeszycie i nadal mi nie wychodzi;/;/;/..... prosze jeszce o wytłumaczenie do rozwiazania....

[ Dodano: 9 Października 2007, 20:08 ]
NIECH KTOS POMOZE PLIIIIIIZZZZZ
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
matekleliczek
Użytkownik
Użytkownik
Posty: 252
Rejestracja: 23 gru 2005, o 11:05
Płeć: Mężczyzna
Lokalizacja: gdańsk
Podziękował: 36 razy
Pomógł: 17 razy

równanie kwadratowe z niewiadoma x

Post autor: matekleliczek » 9 paź 2007, o 21:01

no więc mamy \(\displaystyle{ (m-1)x^2+m\sqrt{7}x+m^2+m+1=0}\)
\(\displaystyle{ \Delta = -4m^3+7m^2+4}\)
i teraz tak


1. dwa rozwiązania
\(\displaystyle{ \Delta >0}\)

czyli \(\displaystyle{ -4m^3+7m^2+4>0}\)
\(\displaystyle{ -4m^3+7m^2+4=0}\)
zauważamy że 2 spełnia owe równanie
i dzielimy przez m-2 to równanie znaczy to \(\displaystyle{ 4m^3+7m^2+4=0}\)

otrzymujemy \(\displaystyle{ -4m^2-m-2=0}\) co już nie ma rozwiązań
czyli to \(\displaystyle{ -4m^3+7m^2+4=0}\) ma tylko jeden pierwiastek równy 2
rysujemuy mały wykresie otrzymujemy dla jakich spełnione jest to \(\displaystyle{ -4m^3+7m^2+4>0}\)
wychodzi że \(\displaystyle{ m\in(-\infty,2)}\)


2. jedno rozwiązanie
\(\displaystyle{ \Delta =0}\)
czyli \(\displaystyle{ m =2}\)
3. nie ma rozwiązań dla
\(\displaystyle{ \Delta }\)

mixiu
Użytkownik
Użytkownik
Posty: 151
Rejestracja: 9 sty 2010, o 17:05
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 11 razy
Pomógł: 2 razy

równanie kwadratowe z niewiadoma x

Post autor: mixiu » 25 mar 2010, o 13:17

matekleliczek pisze:no więc mamy \(\displaystyle{ (m-1)x^2+m\sqrt{7}x+m^2+m+1=0}\)
\(\displaystyle{ \Delta = -4m^3+7m^2+4}\)
i teraz tak


1. dwa rozwiązania
\(\displaystyle{ \Delta >0}\)

czyli \(\displaystyle{ -4m^3+7m^2+4>0}\)
\(\displaystyle{ -4m^3+7m^2+4=0}\)
zauważamy że 2 spełnia owe równanie
i dzielimy przez m-2 to równanie znaczy to \(\displaystyle{ 4m^3+7m^2+4=0}\)

otrzymujemy \(\displaystyle{ -4m^2-m-2=0}\) co już nie ma rozwiązań
czyli to \(\displaystyle{ -4m^3+7m^2+4=0}\) ma tylko jeden pierwiastek równy 2
rysujemuy mały wykresie otrzymujemy dla jakich spełnione jest to \(\displaystyle{ -4m^3+7m^2+4>0}\)
wychodzi że \(\displaystyle{ m\in(-\infty,2)}\)


w odpowiedziach jest napisane ze 2 dla

\(\displaystyle{ m \in (-oo, 1) \cup (1;2)}\)


gdzies jes blad?

Już wiem gdzie jest kruczek ; )

No wiec na początku stoi nam \(\displaystyle{ (m-1)x^{2}...}\)

I teraz trzeba przyjąć 2 rozw.
dla \(\displaystyle{ m-1 > 0 \wedge m-1 <0}\)

No i mamy \(\displaystyle{ m>1 \wedge m<1}\)

ładujemy do naszego zbiorku

\(\displaystyle{ m\in(-\infty,1) \cup (1,2)}\)


No i do tego gdzie "JEST ! MIEJSCe ZEROWE: trzeba dopisać równanie gdy

\(\displaystyle{ m-1 = 0}\) bo wtedy mamy równanie liniowe bo \(\displaystyle{ x^{2}}\) jest 0 i bx = 0


czyli jedno rozw dla:

m=2 i m=1




i teraz juz jest OK

ODPOWIEDZ