Ciało liczbowe

Algebra zbiorów. Relacje, funkcje, iloczyny kartezjańskie... Nieskończoność, liczby kardynalne... Aksjomatyka.
pentel
Użytkownik
Użytkownik
Posty: 113
Rejestracja: 19 lis 2006, o 14:12
Płeć: Mężczyzna
Lokalizacja: POLAND
Podziękował: 24 razy

Ciało liczbowe

Post autor: pentel » 9 paź 2007, o 16:53

Mam takie zadanie.

Co to jest ciało liczbowe? Przykład struktury + uzasadnienie

Nie mam pojęcia jak to zrobić
Jak ktoś się orientuje to może pomógłby mi ?

natkoza
Użytkownik
Użytkownik
Posty: 2278
Rejestracja: 11 kwie 2007, o 18:49
Płeć: Kobieta
Lokalizacja: Dąbrowa Górnicza
Podziękował: 41 razy
Pomógł: 602 razy

Ciało liczbowe

Post autor: natkoza » 9 paź 2007, o 17:22

przykładem ciała liczbowego są liczby: wymierne, rzeczywiste, zespolone.
Zbiór \(\displaystyle{ V}\) w którym określone sa dwa działania [/latex]oplus . odot [/latex] nazywamy ciałem, jeżeli są spełnione następujące warunki:
1. \(\displaystyle{ V}\) jest grupą abelową wzlędem działania \(\displaystyle{ \oplus}\)
2. \(\displaystyle{ V/\{e_{\oplus\}}\) jest grupą abelową względem działania \(\displaystyle{ odot}\)
3. działanie \(\displaystyle{ \odot}\) jest rozdzielne wzgląedm działania \(\displaystyle{ o\plus}\)

1. sprawdzamy łączność (\(\displaystyle{ \forall_{a,b,c\in A} (a\oplus b)\oplus c= a\oplus (b\oplus c)}\)), przemienność(\(\displaystyle{ \forall_{a,b\in A} a \oplus b= b\oplus a}\)), istnienie elementu nautralnego (\(\displaystyle{ \forall_{a\in A} a\oplus e=e\oplus a=a}\))i odwrotnego (\(\displaystyle{ \forall_{a\in A} \exists_{b\in A} a\oplus b=e}\)) działania \(\displaystyle{ \oplus}\)
2. sprawdzamy łączność (\(\displaystyle{ \forall_{a,b,c\in A} (a\odot b)\odot c= a\odot (b\odot c)}\)), przemienność(\(\displaystyle{ \forall_{a,b\in A} a \odot b= b\odot a}\)), istnienie elementu nautralnego (\(\displaystyle{ \forall_{a\in A} a\odot e=e\odot a=a}\))i odwrotnego (\(\displaystyle{ \forall_{a\in A} \exists_{b\in A} a\odot b=e}\)) działania \(\displaystyle{ \odot}\)
3. sprawdzamy warunek: \(\displaystyle{ \forall_{a,b,c\in A} a\odo(b\oplus c)=(a\odot b)\oplus (a\odot c) (b\oplus c)\odot a =(b\odot a)\oplus (c\odot a)}\)
teraz już chyab soie sprawdzisz

ODPOWIEDZ