Trajektorie ortogonalne.

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska

Trajektorie ortogonalne.

Post autor: Raziel95 » 3 kwie 2019, o 21:41

Mam równanie:

\(\displaystyle{ x^{2} + y^{2}=Cx}\)

Wyznaczam \(\displaystyle{ C}\):

\(\displaystyle{ C = \frac{x^{2} + y^{2}}{x}}\)

Teraz pytanie jak to zróżniczkować.

Wiem, że powinno być:

\(\displaystyle{ 2x+2yy'=C}\)
Wiem czemu jest \(\displaystyle{ 2x}\) i \(\displaystyle{ C}\)
Ale nie wiem czemu \(\displaystyle{ 2yy'}\)

Potem wyznaczyć \(\displaystyle{ y'}\) przerzucając wszystko na prawą stronę?

i podstawić \(\displaystyle{ y'= -\frac{1}{y'}}\)

Proszę o wyjaśnienie.

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna

Trajektorie ortogonalne.

Post autor: kerajs » 3 kwie 2019, o 22:49

Raziel95 pisze: Wiem, że powinno być:

\(\displaystyle{ 2x+2yy'=C}\)
Wiem czemu jest \(\displaystyle{ 2x}\) i \(\displaystyle{ C}\)
Ale nie wiem czemu \(\displaystyle{ 2yy'}\)
Bo \(\displaystyle{ y}\) jest pewną funkcją \(\displaystyle{ x}\). Traktuj \(\displaystyle{ y^2}\) jak funkcję złożoną, gdzie funkcją zewnętrzną jest potęgowanie.
\(\displaystyle{ (y^2)'_x=2y \cdot (y)'_x=2yy'}\)
Raziel95 pisze: Potem wyznaczyć \(\displaystyle{ y'}\) przerzucając wszystko na prawą stronę?

i podstawić \(\displaystyle{ y'= -\frac{1}{y'}}\)
Wpierw pozbądź się stałej C
\(\displaystyle{ 2x+2yy'=C \wedge C= \frac{x^2+y^2}{x}}\)
\(\displaystyle{ 2x+2yy'=\frac{x^2+y^2}{x}}\)
Dopiero teraz mozesz
Raziel95 pisze: podstawić \(\displaystyle{ y'= -\frac{1}{y'}}\)
Pozostaje jeszcze rozwiązać uzyskane równanie. (pewnie wystarczy podstawienie \(\displaystyle{ t= \frac{y}{x}}\) )

Raziel95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 4 gru 2016, o 14:30
Płeć: Mężczyzna
Lokalizacja: Polska

Re: Trajektorie ortogonalne.

Post autor: Raziel95 » 3 kwie 2019, o 22:59

Ale jak różniczkuje względem \(\displaystyle{ x}\) to czy \(\displaystyle{ y^{2}}\) nie powinno być równe \(\displaystyle{ 0}\)?
Oraz czemu \(\displaystyle{ \left( y^{2} \right) _{x} ^{'} = 2y \cdot \left( y\right) _{x} ^{'}?}\)
Możesz mi to dokładniej wyjaśnić?

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna

Trajektorie ortogonalne.

Post autor: kerajs » 3 kwie 2019, o 23:03

Ależ już to napisałem:
kerajs pisze: Bo \(\displaystyle{ \red y}\) jest pewną funkcją \(\displaystyle{ \red x}\). Traktuj \(\displaystyle{ y^2}\) jak funkcję złożoną, gdzie funkcją zewnętrzną jest potęgowanie.

ODPOWIEDZ