oszukana kość do gry

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
magdaszew
Użytkownik
Użytkownik
Posty: 14
Rejestracja: 12 lut 2019, o 08:34
Płeć: Kobieta
Lokalizacja: Gdańsk

oszukana kość do gry

Post autor: magdaszew » 12 lut 2019, o 14:44

Mamy oszukaną kość do gry i prawdopodobieństwo uzyskania liczby 6 jest siedem razy większe niż prawdopodobieństwo uzyskania innego wyniku. Bierzemy dobrą i oszukaną kość do gry. Wylosowano jedną z nich i wyrzucona została liczba 6, to ile wynosi prawdopodobieństwo że jest to kość oszukana?

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna

Re: oszukana kość do gry

Post autor: kerajs » 12 lut 2019, o 19:12

To prawdopodobieństwo warunkowe:
\(\displaystyle{ P(O | _ 6)= \frac{P(0 \cap 6)}{P(6)}= \frac{\frac{1}{2} \cdot \frac{7}{8}}{ \frac{1}{2} \cdot \frac{1}{6}+ \frac{1}{2} \cdot \frac{7}{8} }}\)

magdaszew
Użytkownik
Użytkownik
Posty: 14
Rejestracja: 12 lut 2019, o 08:34
Płeć: Kobieta
Lokalizacja: Gdańsk

oszukana kość do gry

Post autor: magdaszew » 13 lut 2019, o 09:53

Tak dla pewności, czy dla szukanej kości prawdopodobieństwo wyrzucenia 6 nie powinno być 7/12.-- 13 lut 2019, o 09:56 --Mam pytanie czy prawdopodobieństwo 6 dla kosci falszywej nie powinno byc 7/12??
kerajs pisze:To prawdopodobieństwo warunkowe:
\(\displaystyle{ P(O | _ 6)= \frac{P(0 \cap 6)}{P(6)}= \frac{\frac{1}{2} \cdot \frac{7}{8}}{ \frac{1}{2} \cdot \frac{1}{6}+ \frac{1}{2} \cdot \frac{7}{8} }}\)

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna

oszukana kość do gry

Post autor: kerajs » 13 lut 2019, o 11:20

To kwestia interpretacji fragmentu zdania:
magdaszew pisze: prawdopodobieństwo uzyskania liczby 6 jest siedem razy większe niż prawdopodobieństwo uzyskania innego wyniku.
Jeśli inny wynik to: nie szóstka, to wtedy prawdopodobieństwo wylosowania szóstki na fałszywej kości wynosi \(\displaystyle{ \frac 7 8}\) (bo: \(\displaystyle{ P(6)=7P(6')}\) ).
Gdyby inny wynik interpretować jako wylosowanie pewnej z pozostałych cyfr, to wtedy prawdopodobieństwo wylosowania szóstki na fałszywej kości wynosi \(\displaystyle{ \frac{7}{12}}\) ( bo: \(\displaystyle{ P(6)=7P(1)=7P(2)=7P(3)=7P(4)=7P(5)}\) ).

Sama zdecyduj która interpretacja Ci odpowiada, choć tak naprawdę to zadanie powinno być sformułowane jednoznacznie i bez możliwości różnego rozumienia jego treści.

magdaszew
Użytkownik
Użytkownik
Posty: 14
Rejestracja: 12 lut 2019, o 08:34
Płeć: Kobieta
Lokalizacja: Gdańsk

Re: oszukana kość do gry

Post autor: magdaszew » 13 lut 2019, o 11:40

Dziękuję za wyjaśnienie

ODPOWIEDZ