Rozwiązać równanie

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
felek321
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 1 lut 2019, o 10:34
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 4 razy

Rozwiązać równanie

Post autor: felek321 » 5 lut 2019, o 17:32

Rozwiązać równanie
\(\displaystyle{ y'=y- \frac{y}{x}-x+2 \\ y(1)=1}\)
Ostatnio zmieniony 8 lut 2019, o 15:50 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Temat umieszczony w złym dziale.

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 202 razy
Pomógł: 2845 razy

Rozwiązać równanie

Post autor: kerajs » 5 lut 2019, o 17:36

To równanie liniowe:
\(\displaystyle{ y'+( \frac{1}{x}-1 )y=-x+2}\)

Potrafisz je rozwiązać? (wpierw równanie uproszczone, potem uzmiennianie stałej)

felek321
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 1 lut 2019, o 10:34
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 4 razy

Rozwiązać równanie

Post autor: felek321 » 5 lut 2019, o 17:41

kerajs pisze:To równanie liniowe:
\(\displaystyle{ y'+( \frac{1}{x}-1 )y=-x+2}\)

Potrafisz je rozwiązać? (wpierw równanie uproszczone, potem uzmiennianie stałej)
Wiesz co chyba nie do końca mógłbyś trochę rozwinąć?

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7144
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 202 razy
Pomógł: 2845 razy

Rozwiązać równanie

Post autor: kerajs » 6 lut 2019, o 05:51

Rozwinąć, czyli rozwiązać?
\(\displaystyle{ y'+( \frac{1}{x}-1 )y=0\\ \frac{y'}{y}=1-\frac{1}{x}\\ \int_{}^{} \frac{ \mbox{d}y }{y}= \int_{}^{} (1-\frac{1}{x}) \mbox{d}x \\ \ln \left| y\right|=x- \ln \left| y\right|+C\\ y= \frac{Ce^x}{x}}\)
Uzmienniam stałą
\(\displaystyle{ y'=C'\frac{e^x}{x}+C\frac{xe^x-e^x}{x^2}}\)
Stąd
\(\displaystyle{ C'\frac{e^x}{x}+C\frac{xe^x-e^x}{x^2}+( \frac{1}{x}-1 )\frac{Ce^x}{x}=-x+2\\ C'\frac{e^x}{x}=-x+2\\ \int_{}^{} \mbox{d}C= \int_{}^{} (-x^2+2x)e^{-x} \mbox{d}x \\ C= \int_{}^{} (-x^2+2x)e^{-x} \mbox{d}x}\)
Powyższą całkę wyliczysz dwukrotnie całkując przez części. Uzyskany wynik (zawierający także stałą!) wstawiasz do rozwiązania równania jednorodnego.
Pozostaje jeszcze wykorzystać podany warunek początkowy aby wyliczyć wartość stałej.

ODPOWIEDZ