Strona 1 z 1

przedział ufnosci

: 4 lut 2019, o 12:09
autor: cwaniaczek5
\(\displaystyle{ X _{1}, ... , X _{n}}\) jest próbą z rozkładu \(\displaystyle{ N(u,1)}\) \(\displaystyle{ , u _{q}}\) jest kwantylem rzędu \(\displaystyle{ q}\) rozkładu \(\displaystyle{ N(0,1)}\). Przedział ufnosci na poziomie ufnosci \(\displaystyle{ q}\) dla \(\displaystyle{ u}\) ma postać \(\displaystyle{ (\vec{X}-uq _{2}n ^{- \frac{1}{2} } , \vec{X}-uq _{1}n ^{- \frac{1}{2} } )}\) gdzie \(\displaystyle{ q _{2} -q _{1} = q}\). Uzasadnić że ryzyko przesacowania jest takie same jak ryzyko niedoszacowania gdy \(\displaystyle{ q_{2}=(1+q)/2}\)

przedział ufnosci

: 4 lut 2019, o 15:39
autor: janusz47
Co to jest ryzyko przesacowania , ryzyko niedoszacowania. skąd te pojęcia dot. przedziału ufności.?

Z jakiego źródła pochodzi to zadanie? Czy prawy koniec tego przedziału zawiera też minus \(\displaystyle{ \overline{X}-...}\)?

przedział ufnosci

: 4 lut 2019, o 16:10
autor: cwaniaczek5
Jest to zadanie z egzaminu i nie mam pojęcia jak je zrobic. Prawy koniec przedziału równiez ma minus