zbadać ciągłość funkcji

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
ccarolaa
Użytkownik
Użytkownik
Posty: 18
Rejestracja: 6 paź 2007, o 19:42
Płeć: Kobieta
Lokalizacja: Łódź
Podziękował: 4 razy

zbadać ciągłość funkcji

Post autor: ccarolaa » 7 paź 2007, o 21:15

Zbadać ciągłość funkcji f w punkcie \(\displaystyle{ x_{0}=1}\):
\(\displaystyle{ \frac{2(x- \sqrt{2-x})}{x-1}}\) dla x1


to ma być w klamrze, ale jeszcze się tak nie zaznajomiłam z tym językiem .
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
jarekp
Użytkownik
Użytkownik
Posty: 173
Rejestracja: 7 paź 2007, o 14:40
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 1 raz
Pomógł: 56 razy

zbadać ciągłość funkcji

Post autor: jarekp » 7 paź 2007, o 21:53

Na pierwszy rzut oka wydaje mi się, że jest tak:
lim \(\displaystyle{ x+e^\frac{1}{1-x}}\) = +∞
więc lim f(x) przy x zmierzającym(z prawej strony) do 1 nie jest równa f(1) więc funkcja nie jest ciągła w tym punkcie. Reszty już nie musisz rozpatrywać

ccarolaa
Użytkownik
Użytkownik
Posty: 18
Rejestracja: 6 paź 2007, o 19:42
Płeć: Kobieta
Lokalizacja: Łódź
Podziękował: 4 razy

zbadać ciągłość funkcji

Post autor: ccarolaa » 7 paź 2007, o 21:56

ok dzięki, a da się zlikwidować symbol nieoznaczony w pierwszym równaniu?

[ Dodano: 7 Października 2007, 21:59 ]
to tak z ciekawości, bo próbowałam i mi nie wychodziło nic sensownego

Awatar użytkownika
jarekp
Użytkownik
Użytkownik
Posty: 173
Rejestracja: 7 paź 2007, o 14:40
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 1 raz
Pomógł: 56 razy

zbadać ciągłość funkcji

Post autor: jarekp » 7 paź 2007, o 22:09

\(\displaystyle{ \frac{2(x- \sqrt{2-x})}{x-1}}\) =\(\displaystyle{ \frac{2(x- \sqrt{2-x})(x+ \sqrt{2-x})}{(x-1)(x+ \sqrt{2-x})}}\) =
=\(\displaystyle{ \frac{2(x^2-2+x)}{(x-1)(x+ \sqrt{2-x})}}\)=\(\displaystyle{ \frac{2(x- 1)(x+2)}{(x-1)(x+ \sqrt{2-x})}}\)=\(\displaystyle{ \frac{2(x+2)}{(x+ \sqrt{2-x})}}\)

i wszystko ładnie wychodzi

micholak
Użytkownik
Użytkownik
Posty: 158
Rejestracja: 1 lis 2005, o 21:40
Płeć: Mężczyzna
Lokalizacja: warszawa
Pomógł: 41 razy

zbadać ciągłość funkcji

Post autor: micholak » 7 paź 2007, o 22:11

Da sie,

A w trzecim rownaniu nieskonczonosc jest z minusem (do jedynki dazy od plus nieskonczonosci) i calosc dazy do 1 wiec sie zgadza.

Awatar użytkownika
jarekp
Użytkownik
Użytkownik
Posty: 173
Rejestracja: 7 paź 2007, o 14:40
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 1 raz
Pomógł: 56 razy

zbadać ciągłość funkcji

Post autor: jarekp » 7 paź 2007, o 22:17

Rzeczywiście. micholak ma rację
w takim razie usunięcie symbolu nieoznaczonego z pierwszego wyrażenia tym bardziej Ci się przyda

ODPOWIEDZ