Operator , norma

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
FikiMiki94
Użytkownik
Użytkownik
Posty: 35
Rejestracja: 16 lis 2017, o 17:33
Płeć: Kobieta
Lokalizacja: Gdańsk
Podziękował: 8 razy

Operator , norma

Post autor: FikiMiki94 » 24 sty 2019, o 12:06

Sprawdzić czy operator \(\displaystyle{ T: C[0,1] \rightarrow C[0,1]}\) , \(\displaystyle{ (Tf)(x)= \int_{0}^{x} f(t)dt}\) jest operatorem ograniczonym i wyznacz jego normę
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

a4karo
Użytkownik
Użytkownik
Posty: 18155
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy
Pomógł: 3063 razy

Re: Operator , norma

Post autor: a4karo » 24 sty 2019, o 13:23

No to sprawdzaj. Definicje w rękę i w drogę...

ODPOWIEDZ