Reszta

Oddzielone od teorii liczb, proste problemy dotyczące zasad dzielenia itp.
Franio
Użytkownik
Użytkownik
Posty: 179
Rejestracja: 13 lis 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 53 razy
Pomógł: 11 razy

Reszta

Post autor: Franio » 7 paź 2007, o 18:37

Jaką resztę otrzymamy, jeżeli 3 podniesiemy do potęgi 12345678 i następnie podzielimy przez 7?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Reszta

Post autor: Piotr Rutkowski » 7 paź 2007, o 18:41

Zauważmy, że \(\displaystyle{ 3^{3} \equiv -1 \(mod7)}\)
\(\displaystyle{ 3^{12345678}=(3^{3})^{4115226}\equiv (-1)^{4115226} \equiv 1 \(mod 7)}\)
co kończy zadanie

Franio
Użytkownik
Użytkownik
Posty: 179
Rejestracja: 13 lis 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 53 razy
Pomógł: 11 razy

Reszta

Post autor: Franio » 7 paź 2007, o 19:18

Czyli reszta wtedy wynosi 6?? Czy jak napisać odpowiedź??

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Reszta

Post autor: Piotr Rutkowski » 7 paź 2007, o 19:22

Reszta wynosi 1.

Franio
Użytkownik
Użytkownik
Posty: 179
Rejestracja: 13 lis 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 53 razy
Pomógł: 11 razy

Reszta

Post autor: Franio » 7 paź 2007, o 19:26

Ok, rozumiem, ale czemu tam przy 7 jest nawias??

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Reszta

Post autor: Piotr Rutkowski » 7 paź 2007, o 19:36

To są kongruencje, a więc rozpatrujemy tutaj podzielność przez 7, czyli modulo 7

ODPOWIEDZ