Zadanie z geometrii analitycznej-odległość punktu od pros

Obiekty i przekształcenia geometryczne, opisane za pomocą układu (nie zawsze prostokątnego) współrzędnych.
neo_as
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 1 lis 2006, o 18:15
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy

Zadanie z geometrii analitycznej-odległość punktu od pros

Post autor: neo_as » 7 paź 2007, o 13:36

Proszę o rozwiązanie tego zadania.

Na prostej l o równaniu 2x+y=5 znajdź punkt P, aby jego odległość od punktu A(-1,1) wynosiła \(\displaystyle{ \sqrt{8}}\).
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Szemek
Gość Specjalny
Gość Specjalny
Posty: 4819
Rejestracja: 10 paź 2006, o 23:03
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 43 razy
Pomógł: 1407 razy

Zadanie z geometrii analitycznej-odległość punktu od pros

Post autor: Szemek » 7 paź 2007, o 14:32

na początek małe przekształcenie
\(\displaystyle{ 2x+y=5 \iff{y=-2x+5}}\)
Rozwiązaniem jest znalezienie punktów przecięcia prostej \(\displaystyle{ y=-2x+5}\) i okręgu o środku w punkcie \(\displaystyle{ A(-1,1)}\) i promieniu \(\displaystyle{ \sqrt{8}}\)
Należy rozwiązać układ nierówności:

\(\displaystyle{ \left\{\begin{array}{l} y=-2x+5\\(x+1)^2+(y-1)^2=(\sqrt{8})^2 \end{array}}\)
Po rozwiązaniu układu wychodzi:
\(\displaystyle{ {\left\{\begin{array}{l} x=1 \\y=3 \end{array}} {\left\{\begin{array}{l} x=1\frac{4}{5}\\ \\y=1\frac{2}{5} \end{array}}\)

Odp. Punkt P ma współrzędne \(\displaystyle{ (1,3)}\) lub \(\displaystyle{ (1\frac{4}{5},1\frac{2}{5})}\)

ODPOWIEDZ