Zadania z logiki

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
pamela696
Użytkownik
Użytkownik
Posty: 88
Rejestracja: 17 wrz 2007, o 19:03
Płeć: Kobieta
Lokalizacja: z wioski indiańskiej
Podziękował: 58 razy

Zadania z logiki

Post autor: pamela696 » 6 paź 2007, o 19:04

ZADANIE 1

a+b=168
a,b \(\displaystyle{ a b\mathbb{N}}\)
NWD (a+b)=24
Wyznacz liczby a i b

ZADANIE 2
\(\displaystyle{ a\cdot b=617}\)
NWD (a,b) = 21
a,b \(\displaystyle{ a b\mathbb{N}+}\)
wyznacz liczby a i b

ZADANIE 3
Wyznacz, że liczba:
a) \(\displaystyle{ 6\cdot5^{3}}\)+ \(\displaystyle{ 5^{4}}\) + \(\displaystyle{ 5^{5}}\)
jest podzielna przez 10
b) \(\displaystyle{ 3\cdot3^{5}}\) + \(\displaystyle{ 3^{6}}\) + \(\displaystyle{ 3^{7}}\) + \(\displaystyle{ 3^{5}}\)
jest nieparzysta

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Zadania z logiki

Post autor: Piotr Rutkowski » 6 paź 2007, o 19:09

1)
\(\displaystyle{ a=24k b=24n}\)
\(\displaystyle{ 24(k+n)=168}\)
\(\displaystyle{ k+n=7 k,n N}\), dalej łatwo

drugie analogicznie
podstawiasz sobie \(\displaystyle{ a=21k b=21n}\)

3)a)\(\displaystyle{ 6*5^{3}+5^{4}+5^{5}=6*5^{3}+5*5^{3}+25*5^{3}=(6+5+25)*5^{3}=36*5^{3}\equiv 6*5 \equiv 30 \equiv 0 \ (mod10)}\)
b)\(\displaystyle{ 3*3^{5}+3^{6}+3^{7}+3^{5}=4*3^{5}+3*3^{5}+9*3^{5}=3^{5}*(4+3+9)=3^{5}*16=2*(8*3^{5})=2k}\), a ta liczba jest parzysta

ODPOWIEDZ