MRM (Metoda rzutów Monge’a) - transfromacje

Dział poświęcony konstrukcjom platońskim i nie tylko...
Zozol720
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 27 mar 2017, o 19:14
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 1 raz

MRM (Metoda rzutów Monge’a) - transfromacje

Post autor: Zozol720 » 18 lis 2018, o 21:19

W rzutach Monge’a zadany jest rzut poziomy dachu w postaci prostokąta \(\displaystyle{ A’B’C’D’}\) o długościach boków \(\displaystyle{ 10\,\cm}\) i \(\displaystyle{ 4\, cm}\), zorientowanych po kątem różnym od \(\displaystyle{ 90}\) stopni do osi x1,2. Wiedząc że jeden z boków leży na rzutni (pełni funkcję okapu), a połać dachu nachylona jest pod kątem \(\displaystyle{ 30}\) stopni do poziomu przyjmij trzecią rzutnię ustawioną prostopadle do połaci. Na podstawie rzutów \(\displaystyle{ A’’’,B’’’, C’’’, D’’’}\) wyznacz rzuty \(\displaystyle{ A'', B'', C'', D”}\). Na czwartej rzutni, z widokiem połaci w wymiarach rzeczywistych, zaznacz prostokątny otwór na komin o wymiarach \(\displaystyle{ 0,4\,cm \times 0,8\, cm}\), podsunięty od górnego, lewego wierzchołka o \(\displaystyle{ 1\, m}\), jak na rysunku poniżej. Pokaż obraz tego otworu na rzutni \(\displaystyle{ \pi 2}\).

Proszę o rozwiązanie wraz z wytłumaczeniem.
Ostatnio zmieniony 18 lis 2018, o 22:19 przez Jan Kraszewski, łącznie zmieniany 2 razy.
Powód: Brak LaTeX-a. Proszę zapoznaj się z instrukcją: http://matematyka.pl/latex.htm . Nie używaj Caps Locka.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

ODPOWIEDZ