żS-2, od: Sylwek, zadanie 4

Liga
Gość Specjalny
Gość Specjalny
Posty: 168
Rejestracja: 29 wrz 2006, o 18:17
Płeć: Mężczyzna
Lokalizacja: Forum Matematyka.pl

żS-2, od: Sylwek, zadanie 4

Post autor: Liga » 6 paź 2007, o 13:12

Sylwek pisze:Mamy okrąg opisany równaniem: \(\displaystyle{ x^{2}+y^{2}=25}\) o środku: \(\displaystyle{ S(0, \ 0)}\) i promieniu: \(\displaystyle{ R=5}\). W każdym okręgu prosta prostopadła do pewnej cięciwy przechodząca przez środek okręgu przechodzi również przez środek tej cięciwy. Rysunek pomocniczy:



Punkty S, U i W są przykładowymi środkami cięciw tego okręgu przechodzących przez punkt A. Wiadomo, że kąty \(\displaystyle{ \alpha, \ \beta, \ \gamma}\) oznaczone na rysunku są proste (jako że prowadziliśmy proste prostopadłe). Więc środki tych cięciw będą układać się w okrąg, którego średnicą jest odcinek SA (z twierdzenia o kącie wpisanym opartym na średnicy okręgu). Promień okręgu będzie miał długość: \(\displaystyle{ r=\frac{1}{2}|SA|=1,5}\)

Środek nowego okręgu ma współrzędne: \(\displaystyle{ X(1\frac{1}{2}, \ 0)}\)

Czyli nowy okrąg będzie opisany równaniem:
\(\displaystyle{ (x-1,5)^2+y^2=2,25}\)

Odpowiedź: Zbiór środków cięciw okręgu \(\displaystyle{ x^{2}+y^{2}=25}\) przechodzących przez punkt \(\displaystyle{ A(3, \ 0)}\) jest opisany równaniem \(\displaystyle{ (x-1,5)^2+y^2=2,25}\).
Ostatnio zmieniony 8 paź 2007, o 19:55 przez Liga, łącznie zmieniany 2 razy.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6502
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2587 razy
Pomógł: 683 razy

żS-2, od: Sylwek, zadanie 4

Post autor: mol_ksiazkowy » 6 paź 2007, o 22:36

Jak dla mnie,prosto, elegancko i schludnie
rozw. warte nawet wyroznienia!, o ile sie zdodzicie to
max tj 5 p

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

żS-2, od: Sylwek, zadanie 4

Post autor: scyth » 7 paź 2007, o 00:16

mhm

ODPOWIEDZ