Czy działanie jest grupą?

Grupy, pierścienie, ciała, rozkładalność, klasyczne struktury algebraiczne...
Klawy123
Użytkownik
Użytkownik
Posty: 76
Rejestracja: 27 lut 2018, o 00:50
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 8 razy

Czy działanie jest grupą?

Post autor: Klawy123 » 7 lis 2018, o 19:14

\(\displaystyle{ P}\) jest zbiorem wszystkich całkowitych potęg liczby \(\displaystyle{ 2.}\) Czy działanie \(\displaystyle{ (D, () ) , () := a \frac{a \cdot b}{2}}\) jest grupą? Zbadałem wszstko i teraz mam dylemat bo element neutralny to \(\displaystyle{ 2}\), I teraz czy \(\displaystyle{ 0}\) należy do tego zbioru, bo jeśli tak to chyba nie ma dla niego elementu odwrotnego. Czy się mylę?
Ostatnio zmieniony 7 lis 2018, o 20:45 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Niepoprawnie napisany kod LaTeX-a. Proszę zapoznaj się z http://matematyka.pl/178502.htm .

a4karo
Użytkownik
Użytkownik
Posty: 17427
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2936 razy

Czy działanie jest grupą?

Post autor: a4karo » 7 lis 2018, o 19:20

A jaką potęgą dwójki jest zero?

Klawy123
Użytkownik
Użytkownik
Posty: 76
Rejestracja: 27 lut 2018, o 00:50
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 8 razy

Czy działanie jest grupą?

Post autor: Klawy123 » 7 lis 2018, o 19:22

Wybacz ja już nie myślę, za dużo tej algebry

-- 7 lis 2018, o 19:24 --

Ale to w takim razie element neutrlany to jest równy: \(\displaystyle{ \frac{4}{dana liczba}}\), a dla np danej liczby równej 8 nie jest już to element należocy do tego zbioru.

a4karo
Użytkownik
Użytkownik
Posty: 17427
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2936 razy

Czy działanie jest grupą?

Post autor: a4karo » 7 lis 2018, o 19:30

Element neutralny nie może zależcć od elementu - jest uniwersalny dla wszystkich elmentów grupy (spójrz na kolejność kwantyfikatorów w definicji)

Klawy123
Użytkownik
Użytkownik
Posty: 76
Rejestracja: 27 lut 2018, o 00:50
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 8 razy

Czy działanie jest grupą?

Post autor: Klawy123 » 7 lis 2018, o 19:33

Źle napisałem, chodziło mi o to że element neutralny w tym przypadku jest równy 2. Element odwrotny (symetryczny) do jakiegoś elementu równa się \(\displaystyle{ \frac{4}{dany element}}\), a dla np danej liczby równej 8 nie jest już to element należący do tego zbioru.

a4karo
Użytkownik
Użytkownik
Posty: 17427
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2936 razy

Czy działanie jest grupą?

Post autor: a4karo » 7 lis 2018, o 19:36

A niby dlaczego nie? Przecież \(\displaystyle{ 4/8=2^{-1}}\)

Klawy123
Użytkownik
Użytkownik
Posty: 76
Rejestracja: 27 lut 2018, o 00:50
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 8 razy

Czy działanie jest grupą?

Post autor: Klawy123 » 7 lis 2018, o 19:39

Ale to całkowity ma być wykładnik? czy wynik tego potęgowania?

a4karo
Użytkownik
Użytkownik
Posty: 17427
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 4 razy
Pomógł: 2936 razy

Czy działanie jest grupą?

Post autor: a4karo » 7 lis 2018, o 19:43

Pisałeś o całkowitych potęgach: czytamy to: potęgi dwójki o wykłądnikach całkowitych, anie : te potęgo dwójki, które sa całkowite. W tym drugim przypadku musiałbyś walczyć np z \(\displaystyle{ 3}\), bo ona jest potęgą dwójki (wylicz jaką )

Klawy123
Użytkownik
Użytkownik
Posty: 76
Rejestracja: 27 lut 2018, o 00:50
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 8 razy

Czy działanie jest grupą?

Post autor: Klawy123 » 7 lis 2018, o 19:47

A no tak, święta racja. Wielkie dzięki

ODPOWIEDZ