arcsin w Taylora (lub chociaż w Maclaurina)

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

arcsin w Taylora (lub chociaż w Maclaurina)

Post autor: Emiel Regis » 4 paź 2007, o 13:00

Rozsądek mi nakazuje próbować rozwijać pochodną zamiast funkcji a później scałkować szereg, ale...
\(\displaystyle{ f(x)=arcsin(x) \\
f'(x)=\frac{1}{\sqrt{1-x^2}}}\)

pochodna też nie jest taka ładna do rozwijania w szereg. Z geometrycznego to nie bardzo widze możliwość pociągnąć a pochodne szybko stają sie kosmiczne... i mam problem z wymyśleniem ogólnego wzoru na n-tą pochodną.
Ktoś ma jakiś pomysł?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
przemk20
Użytkownik
Użytkownik
Posty: 1094
Rejestracja: 6 gru 2006, o 22:47
Płeć: Mężczyzna
Lokalizacja: Olesno
Podziękował: 45 razy
Pomógł: 236 razy

arcsin w Taylora (lub chociaż w Maclaurina)

Post autor: przemk20 » 4 paź 2007, o 19:41

Najlepiej to chyba skorzystac z uogolnienego dwumianu newtona :
\(\displaystyle{ f'(x) = (1-x^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} {-\frac{1}{2} \choose k} (-x^2)^k}\)

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

arcsin w Taylora (lub chociaż w Maclaurina)

Post autor: Emiel Regis » 4 paź 2007, o 22:33

No ale co dalej: >

Awatar użytkownika
Undre
Gość Specjalny
Gość Specjalny
Posty: 1430
Rejestracja: 15 lis 2004, o 02:05
Płeć: Mężczyzna
Lokalizacja:
Podziękował: 3 razy
Pomógł: 92 razy

arcsin w Taylora (lub chociaż w Maclaurina)

Post autor: Undre » 5 paź 2007, o 00:26


Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

arcsin w Taylora (lub chociaż w Maclaurina)

Post autor: Emiel Regis » 5 paź 2007, o 10:56

Pomogło; )
Tu własnie jest wyjaśnione jak współczynnik zapisac w uczciwej postaci.
przemk20 pisze:\(\displaystyle{ f'(x) = (1-x^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} {-\frac{1}{2} \choose k} (-x^2)^k}\)
Miałem duże obiekcje co do zastosowania tego wzoru z tego względu że przy jego wyprowadzaniu korzysta się właśnie z rozwinięcia w szereg Maclaurina funkcji \(\displaystyle{ (1+x)^s}\). No i ten współczynnik nieelegancki jakiś.
W każdym razie problem pokonałem, dziekuje za pomoc.

Jeśli by ktoś chciał sobie tak jak ja "od podstaw" wyprowadzić ten wzór to niech sobie rozwinie w szereg funkcję \(\displaystyle{ f(t)=(1+t)^s}\) oraz podstawi pozniej \(\displaystyle{ t=-x^2, s=-\frac{1}{2}}\)
A co zrobić ze współczynnikami pisze w linku.

ODPOWIEDZ