Granica i zbieżność ciągu- zadania

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Alik
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 29 wrz 2005, o 20:28
Płeć: Mężczyzna
Lokalizacja: War(saw)
Podziękował: 12 razy
Pomógł: 2 razy

Granica i zbieżność ciągu- zadania

Post autor: Alik » 4 paź 2007, o 12:24

Zebrało się tu kilka granic, których nie potrafię policzyć;

1. Niech \(\displaystyle{ a,b>0}\) . Zbadać zbieżność ciągu \(\displaystyle{ \sqrt[n]{a^{n}+b^{n}}}\)
2. Niech \(\displaystyle{ a>0}\) . Zbadać zbieżność ciągu \(\displaystyle{ x_{1}=a, x_{n+1}=\sqrt{1+x_{n}}}\)
3. Niech \(\displaystyle{ a\in R}\) . Zbadać zbieżność ciągu \(\displaystyle{ x_{n}=a^{n}}\)
Liczę na Waszą pomoc, z góry dziękuje za każdy przejaw wsparcia.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Calasilyar
Gość Specjalny
Gość Specjalny
Posty: 2656
Rejestracja: 2 maja 2006, o 21:42
Płeć: Mężczyzna
Lokalizacja: Wrocław/Sieradz
Podziękował: 29 razy
Pomógł: 410 razy

Granica i zbieżność ciągu- zadania

Post autor: Calasilyar » 4 paź 2007, o 13:48

zad.2.
ciąg jest
- monotoniczny (rosnący)
- ograniczony, na przykład przez a+1:
\(\displaystyle{ x_{1}=a}\)

Alik
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 29 wrz 2005, o 20:28
Płeć: Mężczyzna
Lokalizacja: War(saw)
Podziękował: 12 razy
Pomógł: 2 razy

Granica i zbieżność ciągu- zadania

Post autor: Alik » 4 paź 2007, o 15:25

OK. Ten ciąg jest zbieżny jeśli wartość bezwzględna ilorazu q jest mniejsza od 1, a granica wynosi wtedy \(\displaystyle{ \frac{a_{1}}{1-q}}\) . Nie bardzo wiem jak wygląda iloraz tego ciągu, więc nie potrafię policzyć granicy. Proszę o dalszą, łopatologiczną wskazówkę

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Granica i zbieżność ciągu- zadania

Post autor: Piotr Rutkowski » 4 paź 2007, o 15:40

Zobacz, że:
\(\displaystyle{ q=\frac{x_{n+1}}{x_{n}}=\frac{a^{n+1}}{a^{n}}=a}\)

Alik
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 29 wrz 2005, o 20:28
Płeć: Mężczyzna
Lokalizacja: War(saw)
Podziękował: 12 razy
Pomógł: 2 razy

Granica i zbieżność ciągu- zadania

Post autor: Alik » 4 paź 2007, o 16:34

Proste Dzięki!

[ Dodano: 4 Października 2007, 18:59 ]
Mam jeszcze 2 granice, które chyba należy policzyć z tw. o 3 ciągach, ale nie mam pomysłu na dobranie pozostałych ciągów:
1) \(\displaystyle{ \frac{4^{n}+2^{n}}{4^{n}-3^{n}}}\)
2) \(\displaystyle{ \frac{4^{n}-2^{n}}{3^{n}+n^{3}}}\)
I jeszcze taki wynalazek:
3) \(\displaystyle{ \frac{{\sum_{i=1}^{n} i}}{n^{2}}}\)

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Granica i zbieżność ciągu- zadania

Post autor: Piotr Rutkowski » 4 paź 2007, o 18:57

3) jest to równoważne:
\(\displaystyle{ \frac{1+2+...+n}{n^{2}}=\frac{\frac{n(n+1)}{2}}{n^{2}}=\frac{n+1}{2n} \frac{1}{2}}\)

ODPOWIEDZ