permutacje, wariacje, kombinacje...

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

permutacje, wariacje, kombinacje...

Post autor: Emiel Regis » 7 paź 2007, o 16:48

a) Od liczby wszystkich możliwosci na jakie mogę wybrac 10 kart (wybieram 10 z 52) odejmuję liczbe możliwosci w których nie ma żadnego asa (wybieram 10 z 48)
b) Asa mogę wybrać na 4 sposoby, do niego dolosowuję 9 kart z pozostałych 48 (bo już bez asów)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

mat1989
Użytkownik
Użytkownik
Posty: 3393
Rejestracja: 29 sty 2006, o 14:15
Płeć: Mężczyzna
Podziękował: 466 razy
Pomógł: 197 razy

permutacje, wariacje, kombinacje...

Post autor: mat1989 » 8 paź 2007, o 17:46

10) \(\displaystyle{ C^3_{4}C^3_{6}+C^4_{4}+C^2_{6}}\)
ok?
9)\(\displaystyle{ V^3_6}\)?

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

permutacje, wariacje, kombinacje...

Post autor: Emiel Regis » 8 paź 2007, o 22:44

9. dobrze, choć wg mnie lepiej widać jak sie zapisze: \(\displaystyle{ 6 5 4}\)
10. tu rozumiem że plus u Ciebie z rozpędu...
\(\displaystyle{ C^3_4 C^3_6+C^4_4 C^2_6}\)

mat1989
Użytkownik
Użytkownik
Posty: 3393
Rejestracja: 29 sty 2006, o 14:15
Płeć: Mężczyzna
Podziękował: 466 razy
Pomógł: 197 razy

permutacje, wariacje, kombinacje...

Post autor: mat1989 » 10 paź 2007, o 16:58

jeszcze takie jedno zadanie, które trochę mnie przerosło:
W turnieju rozegrano 84 partie. Ilu zawodników brało udział w turnieju jeżeli 2 z nich wycofało się po rozegraniu 3 partii?
Ostatnio zmieniony 10 paź 2007, o 20:06 przez mat1989, łącznie zmieniany 1 raz.

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

permutacje, wariacje, kombinacje...

Post autor: Emiel Regis » 10 paź 2007, o 17:41

Edytowane rozwiązanie.
Temat zadania:
W turnieju rozegrano 84 partie. Ilu zawodników brało udział w turnieju jeżeli 2 z nich wycofało się po rozegraniu 3 partii?

Zakładam że każdy z każdym grał raz.

n - liczba zawodników w turnieju po wycofaniu się dwóch osób
n graczy rozegrało \(\displaystyle{ C^2_n}\) partii.
n+2 graczy rozegrało \(\displaystyle{ C^2_n+6}\) partii.
czyli:
\(\displaystyle{ C^2_n+6=84}\)
Tym razem rozwiązanie wychodzi naturalne n=13. Czyli wszystko się zgadza.
Jeśli coś niejasne dalej to pytaj.


Temat się już znacznie wydłużył także następne zadania umieszczaj już w osobnych tematach.
Ostatnio zmieniony 10 paź 2007, o 20:13 przez Emiel Regis, łącznie zmieniany 1 raz.

mat1989
Użytkownik
Użytkownik
Posty: 3393
Rejestracja: 29 sty 2006, o 14:15
Płeć: Mężczyzna
Podziękował: 466 razy
Pomógł: 197 razy

permutacje, wariacje, kombinacje...

Post autor: mat1989 » 10 paź 2007, o 17:43

ups, miało być że rozegrali 3 partie :/ ja to zawsze coś popsuje...
ale trochę nie rozumiem tego zapisu właśnie.

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

permutacje, wariacje, kombinacje...

Post autor: Emiel Regis » 10 paź 2007, o 20:04

Znaczy się kto rozegrał 3 partie? Tych dwóch gosci czy kazdy z kazdym? Moze napisz od początku tresc zadania...

mat1989
Użytkownik
Użytkownik
Posty: 3393
Rejestracja: 29 sty 2006, o 14:15
Płeć: Mężczyzna
Podziękował: 466 razy
Pomógł: 197 razy

permutacje, wariacje, kombinacje...

Post autor: mat1989 » 10 paź 2007, o 20:06

znaczy się zamiast 2 ma być 3 partie. No i właśnie z tym mam problem. Bo ja to widzę, że wszyscy grają partie na raz, czyli wtedy wszyscy rozegrali po 3 partie i chciałem to zapisać tak samo jak Ty tylko zamiast 84-6 dać 84-3n.

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

permutacje, wariacje, kombinacje...

Post autor: Emiel Regis » 10 paź 2007, o 20:14

Zobacz wyżej, teraz jest dobrze. Czy graja naraz czy nie naraz nie ma znaczenia, mamy 6 nadmiarowych partii które na samym koncu mozna uwzględnić. Wystarczy policzyć ile gier zagra n osób.

ODPOWIEDZ