Wykazać, że liczba naturalna

Oddzielone od teorii liczb, proste problemy dotyczące zasad dzielenia itp.
lemi
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 8 lis 2006, o 20:36
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 1 raz

Wykazać, że liczba naturalna

Post autor: lemi » 1 paź 2007, o 21:05

Wykazać, że liczba naturalna postaci \(\displaystyle{ 3k + 2, k N}\), nie może być kwadratem liczby
naturalnej.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Sylwek
Gość Specjalny
Gość Specjalny
Posty: 2711
Rejestracja: 21 maja 2007, o 14:24
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 155 razy
Pomógł: 654 razy

Wykazać, że liczba naturalna

Post autor: Sylwek » 1 paź 2007, o 21:32

Sprawdźmy jakie reszty z dzielenia przez 3 dają kwadraty liczb naturalnych. Do rozważenia mamy 3 postaci, pod jakimi może występować liczba naturalna:

\(\displaystyle{ a) \ n=3t \\ n^2=(3t)^2=9t^2=3 3t^2+0 \\ \\ b) \ n=3t+1 \\ n^2=(3t+1)^2=9t^2+6t+1=3(3t^2+2t)+1 \\ \\ c) \ n=3t+2 \\ n^2=(3t+2)^2=9t^2+12t+4=3(3t^2+4t+1)+1}\)

Czyli kwadrat liczby naturalnej może dawać przy dzieleniu przez 3 resztę 0 lub 1. Nasza liczba jest postaci x=3k+2, czyli x przy dzieleniu przez 3 daje resztę 2, czyli x nie może być kwadratem liczby naturalnej

lemi
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 8 lis 2006, o 20:36
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 1 raz

Wykazać, że liczba naturalna

Post autor: lemi » 2 paź 2007, o 09:31

ale przecież w ostatnim jest reszta 1 a nie 2 więc skąd to twierdzenie, albo czegoś nie widzę w tym rozwiązaniu

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Wykazać, że liczba naturalna

Post autor: Piotr Rutkowski » 2 paź 2007, o 17:27

No, Sylwek sprawdził, jakie reszty z dzielenia przez 3 może dawać kwadrat liczby naturalnej. Nasza liczba nie daje żadnej z możliwych reszt, a więc nie jest kwadratem liczby naturalnej

ODPOWIEDZ