kilka zadan: udowodnij, wykaz....

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
bleh
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 24 wrz 2007, o 22:43
Płeć: Mężczyzna
Lokalizacja: lodz
Podziękował: 1 raz

kilka zadan: udowodnij, wykaz....

Post autor: bleh » 30 wrz 2007, o 14:16

1.1 Udowodnij, ze jedynymi liczbami rzeczywistymi x, y, z spelniajacymi równanie
3x� + y� + z� = 2x(y + z)
sa x = y = z = 0.

1.2 Rozwi�az w liczbach calkowitych równanie
x� = y� + 2x + 12:

1.3 Wykaz, ze liczba naturalna postaci 3k + 2, k 2 N, nie moze byc kwadratem liczby
naturalnej.

1.4 Korzystajac z metody dowodzenia nie wprost wykazac, ze istnieje nieskonczenie wiele liczb
pierwszych.

1.5. Wykaz nierównosc
x,yεR |x + y| ≤ |x| + |y|
na dwa sposoby: konstruujac dowód wprost (trzeba wtedy rozwazyc pewne przypadki) oraz
dowód nie wprost (wykazujac falszywosc nierównosci |x|+ |y| > |x| + |y|).
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6480
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2587 razy
Pomógł: 683 razy

kilka zadan: udowodnij, wykaz....

Post autor: mol_ksiazkowy » 30 wrz 2007, o 15:26

ad 1.2
\(\displaystyle{ (x-1)^2=y^2+13}\)
tj
\(\displaystyle{ (x-1-y)(x-1+y)=13}\)
etc


[ Dodano: 30 Września 2007, 16:28 ]
ad 1.3
\(\displaystyle{ 3k+2 =n^2}\)
tj
\(\displaystyle{ 3(k+1) =n^2+1}\)
sprz

niewiadomo
Użytkownik
Użytkownik
Posty: 119
Rejestracja: 17 paź 2006, o 17:55
Płeć: Mężczyzna
Lokalizacja: Z nikąd
Podziękował: 7 razy

kilka zadan: udowodnij, wykaz....

Post autor: niewiadomo » 30 wrz 2007, o 15:35

1.1
\(\displaystyle{ {x}^2+{x}^2-2xy+{y}^2+{x}^2-2xz+{z}^2=0 \\ {x}^2+{(x-y)}^2+{(x-z)}^2=0}\)
Kwadrat liczby rzeczywistej jest jest większy bądź równy zero.

1.2
\(\displaystyle{ {x}^2-2x+1-{y}^2=13 \\{(x-1)}^2-{y}^2=13\\(x-1-y)(x-1+y)=13}\)
Teraz robisz kilka układzików równań bo dla liczb całkowitych możliwe czynniki iloczynu 13 to: 13 i 1; 1 i 13; -13 i -1; -1 -13

1.3. Zauważ że liczba 3k+2 przy dzieleniu przez 3 daje resztę dwa, a żaden kwadrat nie daje takiej reszty. Sprawdzmy.
Możliwe są 3 warianty liczby naturalnej. Może wyglądac 3x, 3x+1, badz 3x+2;
Kwadrat każdej z niej przy dzieleniu przez trzy daje reszty:
a)
\(\displaystyle{ {3x}^2=9{x}^2}\)
Reszta 0
b)
\(\displaystyle{ {(3x+1)}^2=3(3{x}^2+2x)+1}\)
Reszta 1
c)
\(\displaystyle{ {(3x+2)}^2=3(3{x}^2+4x+1)+1}\)
Reszta 1
1.4 Jeżeliby była skończona liczba liczb pierwszych to znalazłaby sie liczba która byłaby iloczyn wszystkich liczb pierwszym powiększona o 1 i powstałaby kolejna liczba pierwsza. Co dochodzi do sprzeczności, mamy nastepną liczbę pierwszą

bleh
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 24 wrz 2007, o 22:43
Płeć: Mężczyzna
Lokalizacja: lodz
Podziękował: 1 raz

kilka zadan: udowodnij, wykaz....

Post autor: bleh » 30 wrz 2007, o 16:08

w zad 1.3 w punkcie a) powinno byc chyba (3x)�=9x�

ale dzieki bardzo za te rozwiazania ;*

jurwittrans
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 2 paź 2007, o 20:07
Płeć: Mężczyzna
Lokalizacja: Gorzów Wielkopolski

kilka zadan: udowodnij, wykaz....

Post autor: jurwittrans » 2 paź 2007, o 20:31

Witam mam wykazać że wyrażenie
6 +[txt]6^{2}[/txt] +\(\displaystyle{ 6^{3}}\)+…+\(\displaystyle{ 6^{98{}\) +\(\displaystyle{ 6^{99}}\) + \(\displaystyle{ 6^{100}}\) /1+2+4 To /oznacza dzielenie

jest liczba calkowita.
Nie mogę rownież zrozumieć jak obliczyc \(\displaystyle{ 6^{100}}\)
to jest dosc pilne.

niewiadomo
Użytkownik
Użytkownik
Posty: 119
Rejestracja: 17 paź 2006, o 17:55
Płeć: Mężczyzna
Lokalizacja: Z nikąd
Podziękował: 7 razy

kilka zadan: udowodnij, wykaz....

Post autor: niewiadomo » 2 paź 2007, o 21:54

Pogrupuj wyrazy \(\displaystyle{ (6+6^2)+(6^3+6^4)....(6^99+6^100)=6(6+1)+6^3(1+6)+6^99(1+6)}\)

ODPOWIEDZ