Granica ciągów

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Wojtek Jerzy
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 14 mar 2018, o 13:06
Płeć: Mężczyzna
Lokalizacja: Szczecin / Kopenhaga

Granica ciągów

Post autor: Wojtek Jerzy » 14 mar 2018, o 14:05

Witam, mam problem z 2 zadaniami z granicy ciągów.
zad. 1:
\(\displaystyle{ \lim_{ n \to \infty } \frac{\sqrt{{2n ^{2}-1 }}+{ \sqrt{n ^{2}+3n+3 }}}{ \sqrt[3]{2n ^{3}-1 } }}\)

Zad.2:
\(\displaystyle{ \lim_{n \to \infty } \frac{ {n \choose 2} }{n ^{2} +3n -1}}\)

Dziękuje za pomoc
Ostatnio zmieniony 14 mar 2018, o 14:11 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Awatar użytkownika
Bierut
Użytkownik
Użytkownik
Posty: 684
Rejestracja: 26 paź 2006, o 17:11
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 15 razy
Pomógł: 84 razy

Re: Granica ciągów

Post autor: Bierut » 14 mar 2018, o 14:37

Ad. 1
\(\displaystyle{ \lim_{ n \to \infty } \frac{\sqrt{{2n ^{2}-1 }}+{ \sqrt{n ^{2}+3n+3 }}}{ \sqrt[3]{2n ^{3}-1 } }= \lim_{n\to\infty} \frac{\sqrt{n^{2}\left(2-\frac{1}{n^2}\right)}+\sqrt{n^{2}\left(1+\frac{3}{n}+\frac{3}{n^2}\right)}}{\sqrt[3]{n^{3}\left(2-\frac{1}{n^3}\right)}}= \\ = \lim_{n\to\infty} \frac{n\left(\sqrt{2-\frac{1}{n^2}}+\sqrt{1+\frac{3}{n}+\frac{3}{n^2}}\right)}{n\sqrt[3]{2-\frac{1}{n^3}}}= \frac{\sqrt{2}+1}{\sqrt[3]{2}}}\)

Ad. 2
\(\displaystyle{ \lim_{n \to \infty } \frac{ {n \choose 2} }{n ^{2} +3n -1}= \lim_{n \to \infty } \frac{\frac{n!}{2!\cdot(n-2)!}}{n^{2}+3n-1}= \lim_{n \to \infty } \frac{\frac{(n-2)!\cdot(n-1)\cdot n}{2\cdot(n-2)!}}{n^{2}+3n-1}= \\ = \lim_{n \to \infty } \frac{(n-1)\cdot n}{2n^2+6n-2}= \lim_{n \to \infty } \frac{n^2\left(1-\frac{1}{n}\right)}{n^2\left(2+\frac{6}{n}-\frac{2}{n^2}\right)}= \frac{1}{2}}\)

ODPOWIEDZ