żS-1, od: Sylwek, zadanie 1

Liga
Gość Specjalny
Gość Specjalny
Posty: 168
Rejestracja: 29 wrz 2006, o 18:17
Płeć: Mężczyzna
Lokalizacja: Forum Matematyka.pl

żS-1, od: Sylwek, zadanie 1

Post autor: Liga » 28 wrz 2007, o 00:16

Sylwek pisze:Ponieważ ciąg \(\displaystyle{ 3^{x_{1}}, 3^{x_{2}}, 3^{x_{3}},\ldots}\) to ciąg geometryczny, to:
\(\displaystyle{ (3^{x_{n}})^2=3^{x_{n-1}} 3^{x_{n+1}} \iff 3^{2x_{n}}=3^{x_{n-1}+x_{n+1}} \iff 2x_{n}=x_{n-1}+x_{n+1}}\)

Czyli ciąg \(\displaystyle{ x_{1}, \ x_{2}, \ x_{3}, \ \ldots}\) jest ciągiem arytmetycznym.

Mamy więc:
\(\displaystyle{ x_{1}+x_{2}+\ldots+x_{11}=x_{1}+x_{1}+r+ \ldots + x_{1}+10r=11x_{1}+55r=55 \\ x_{1}+5r=5}\)

Ale wiemy też, że:
\(\displaystyle{ x_{5}=x_{1}+4r=4}\)

Odejmując stronami:
\(\displaystyle{ x_{1}+5r-x_{1}-4r=5-4 \iff r=1}\)

Dostajemy:
\(\displaystyle{ x_{1}+5 1 = 5 \iff x_{1}=0}\)

Wyliczamy:
\(\displaystyle{ x_{2}=x_{1}+r=0+1=1}\)

Ostatecznie:
\(\displaystyle{ 3^{x_{2}}=3^1=3}\)

Odpowiedź: Drugi wyraz tego ciągu wynosi 3.
Ostatnio zmieniony 6 paź 2007, o 23:22 przez Liga, łącznie zmieniany 2 razy.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
bolo
Gość Specjalny
Gość Specjalny
Posty: 2470
Rejestracja: 2 lis 2004, o 08:28
Płeć: Mężczyzna
Lokalizacja: BW
Podziękował: 8 razy
Pomógł: 191 razy

żS-1, od: Sylwek, zadanie 1

Post autor: bolo » 28 wrz 2007, o 00:37

Brak zastrzeżeń.

5/5

ODPOWIEDZ