Reszta z dzielenia; podwójny pierwiastek.

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
GT4R
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 12 lis 2006, o 18:50
Płeć: Mężczyzna
Lokalizacja: Jelcza k.Krakowa
Podziękował: 5 razy

Reszta z dzielenia; podwójny pierwiastek.

Post autor: GT4R » 27 wrz 2007, o 18:12

1. Reszta z dzielenia wielomianu W(x) przez x+1 wynosi 3, a reszta z dzielenia W(x) przez x-2 wynosi 15. Znajdż resztę, którą otrzymamy dzieląc W(x) przez (x+1)(x-2).

2. Dla jakich wartosci p i q liczba 2 jest pierwiastkiem podwójnym wielomianu \(\displaystyle{ W(x)=x^3-x^2+px+q}\)?

Temat poprawiłam. Polecam lekturę Regulaminu. Kasia
Ostatnio zmieniony 29 wrz 2007, o 09:12 przez GT4R, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

soku11
Użytkownik
Użytkownik
Posty: 6607
Rejestracja: 16 sty 2007, o 19:42
Płeć: Mężczyzna
Podziękował: 119 razy
Pomógł: 1822 razy

Reszta z dzielenia; podwójny pierwiastek.

Post autor: soku11 » 27 wrz 2007, o 18:27

1.
\(\displaystyle{ W(-1)=3\\
W(2)=15\\
W(x)=(x+1)(x-2)\cdot Q(x) +ax+b\\
W(-1)=-a+b\\
W(2)=2a+b\\
\begin{cases} -a+b=3\\2a+b=15\end{cases}}\)


2.
\(\displaystyle{ \begin{cases} W(2)=0\\W'(2)=0\end{cases}}\)

POZDRO

GT4R
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 12 lis 2006, o 18:50
Płeć: Mężczyzna
Lokalizacja: Jelcza k.Krakowa
Podziękował: 5 razy

Reszta z dzielenia; podwójny pierwiastek.

Post autor: GT4R » 27 wrz 2007, o 19:13

GT4R, do tego drugiego zadanka mam takie równanie 2p+q=-4 , ale tylko jedeno jak znalezć drugie

soku11
Użytkownik
Użytkownik
Posty: 6607
Rejestracja: 16 sty 2007, o 19:42
Płeć: Mężczyzna
Podziękował: 119 razy
Pomógł: 1822 razy

Reszta z dzielenia; podwójny pierwiastek.

Post autor: soku11 » 27 wrz 2007, o 20:19

2.
\(\displaystyle{ W'(x)=3x^2-2x+p\\
\begin{cases} 8-4+2p+q=0\\12-4+p=0\end{cases} \\
\begin{cases} 2p+q=-4\\8+p=0\end{cases} \\
\begin{cases} q=-4-2p\\p=-8\end{cases} \\
\begin{cases} q=12\\p=-8\end{cases} \\}\)


POZDRO

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Reszta z dzielenia; podwójny pierwiastek.

Post autor: scyth » 28 wrz 2007, o 10:07

2. można prościej (bez pochodnych - niektórzy mogą ich jeszcze nie znać ):
z warunków zadania wiemy, że \(\displaystyle{ W(x)=(x-2)^2\cdot(x+c)}\), gdzie c to pewna liczba. W takim razie porównując stronami oba wzory dostajemy:
\(\displaystyle{ (x-2)^2(x+c)=x^3-x^2+px+q \\
x^3-x^2(4-c)+x(4-4c)+4c=x^3-x^2+px+q}\)

Stąd porównując współczynniki dostajemy układ równań:
\(\displaystyle{ \begin{cases}
4-c=1 \\
4-4c=p \\
4c=q
\end{cases} \\
\\
\begin{cases}
c=3 \\
p=-8 \\
q=12
\end{cases} \\
W(x)=x^3-x^2-8x+12}\)

ODPOWIEDZ