Liczba x1, jest

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Enjooy
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 26 wrz 2007, o 14:42
Płeć: Mężczyzna
Lokalizacja: Łomża
Podziękował: 6 razy

Liczba x1, jest

Post autor: Enjooy » 26 wrz 2007, o 15:56

Liczba x1, jest pierwiastkiem wielomianu W(x). Jaka jest krotność tego pierwiastka?
a) W(x)=x�-9x, x1= 3
b) W(x)=x4-7x�+18x�-20x+8, x1= 2
c) W(x)=x�-4x+8, x1= 2
d) W(x)=x5-4x4-15x�+60x�-16x+64, x1= -4

Proszę o wytłumaczenie i jak ktoś może to zrobić jeden przykład, abym miał się na czym wzorować.

Z góry dzięki.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

exupery
Użytkownik
Użytkownik
Posty: 518
Rejestracja: 21 lut 2007, o 17:51
Płeć: Mężczyzna
Lokalizacja: Kluczewsko
Podziękował: 20 razy
Pomógł: 67 razy

Liczba x1, jest

Post autor: exupery » 26 wrz 2007, o 17:57

Użyj twierdzenia Bezouta(Liczba a jest pierwiastkiem wielomianu W zmiennej x wtedy i tyko wtedy, gdy wielomian ten jest podzielny przez dwumian (x-a).
Przykład
\(\displaystyle{ \begin{array}{lll}
(x^3 - 9x) & : & (x-3) = x^2 +3 \\
\underline{-x^3 + 3x^2} & & \\
\qquad \ +3x^2-6x & & \\
\qquad \ \ \underline{-3x^2+6x} & &\\
\qquad \quad R = 0 & &
\end{array}}\)


czyli\(\displaystyle{ x^{3} -9x=(x-3)(x^{2} +3x)=x(x-3)(x+3)}\)

sorki za zapis

Enjooy
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 26 wrz 2007, o 14:42
Płeć: Mężczyzna
Lokalizacja: Łomża
Podziękował: 6 razy

Liczba x1, jest

Post autor: Enjooy » 26 wrz 2007, o 18:09

Dzięki, to zrobiłem, tylko nie wiem jaka jest krotność.

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

Liczba x1, jest

Post autor: Piotr Rutkowski » 26 wrz 2007, o 18:12

Krotność wynika wprost z postaci iloczynowej. Jeśli w postaci iloczynowej jeden z czynników to
\(\displaystyle{ (x-x_{i})^{k}}\), to pierwiastek \(\displaystyle{ x_{i}}\) danego wielomianu będzie k-krotny

ODPOWIEDZ