Równanie Lagrange'a

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
mat06
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 12 wrz 2013, o 17:58
Płeć: Mężczyzna
Lokalizacja: Polska

Równanie Lagrange'a

Post autor: mat06 » 30 lis 2017, o 17:41

Proszę o pomoc w rozwiązaniu równania Lagrange'a, nie mam pojęcia jak się za to zabrać.

\(\displaystyle{ x=t(x')^2+x'}\)

lukasz1804
Moderator
Moderator
Posty: 4438
Rejestracja: 17 kwie 2007, o 13:44
Płeć: Mężczyzna
Lokalizacja: Łódź

Re: Równanie Lagrange'a

Post autor: lukasz1804 » 30 lis 2017, o 18:19

Najpierw zróżniczkujmy równanie stronami:

\(\displaystyle{ x'=(x')^2+2tx'x''+x''}\)

Podstawiamy pomocniczą zmienną:
\(\displaystyle{ z=x'}\)

i kontynuujemy:

\(\displaystyle{ z=z^2+2tzz'+z'}\)
\(\displaystyle{ z'(2tz+1)=z-z^2}\)

Przechodzimy teraz do równania zmiennej \(\displaystyle{ t}\):

\(\displaystyle{ 2tz+1=t'(z-z^2)}\)

Jest to równanie liniowe, nie powinieneś mieć kłopotu z jego rozwiązaniem.

mat06
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 12 wrz 2013, o 17:58
Płeć: Mężczyzna
Lokalizacja: Polska

Re: Równanie Lagrange'a

Post autor: mat06 » 30 lis 2017, o 20:21

Przechodzimy teraz do równania zmiennej t:

\(\displaystyle{ 2tz+1=t'(z-z^2)}\)
Mógłbyś wytłumaczyć mi to przejście?
Ostatnio zmieniony 30 lis 2017, o 20:31 przez SlotaWoj, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

lukasz1804
Moderator
Moderator
Posty: 4438
Rejestracja: 17 kwie 2007, o 13:44
Płeć: Mężczyzna
Lokalizacja: Łódź

Re: Równanie Lagrange'a

Post autor: lukasz1804 » 30 lis 2017, o 20:41

\(\displaystyle{ z'(2tz+1)=z-z^2}\) oznacza dokładnie tyle co \(\displaystyle{ \frac{\dd z}{\dd t}(2tz+1)=z-z^2}\). Mnożąc stronami przez \(\displaystyle{ \frac{\dd t}{\dd z}}\) dostaniemy równanie liniowe względem \(\displaystyle{ t}\).

mat06
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 12 wrz 2013, o 17:58
Płeć: Mężczyzna
Lokalizacja: Polska

Re: Równanie Lagrange'a

Post autor: mat06 » 30 lis 2017, o 21:01

Z moich obliczeń wynika, że:
\(\displaystyle{ t=(1-z)^{-2}\cdot (\frac{1}{1-z}-\ln(z-1)+\ln(z)+c)}\)

Dobrze to policzyłem? Co dalej?

lukasz1804
Moderator
Moderator
Posty: 4438
Rejestracja: 17 kwie 2007, o 13:44
Płeć: Mężczyzna
Lokalizacja: Łódź

Re: Równanie Lagrange'a

Post autor: lukasz1804 » 1 gru 2017, o 20:25

Ja akurat otrzymałem takie rozwiązanie równania liniowego:

\(\displaystyle{ t=\frac{\ln z-z+C}{(1-z)^2}}\)

Niemniej jest to ten przypadek, w którym dochodzimy jedynie do postaci uwikłanej i trudno odzyskać funkcję \(\displaystyle{ z(t)}\), by potem jako rozwiązanie wyjściowego równania podać funkcję pierwotną funkcji \(\displaystyle{ z}\)...

mat06
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 12 wrz 2013, o 17:58
Płeć: Mężczyzna
Lokalizacja: Polska

Re: Równanie Lagrange'a

Post autor: mat06 » 1 gru 2017, o 22:20

A mógłby Pan przedstawić metodę, jaką uzyskał Pan ten wynik?

ODPOWIEDZ