Trapezy -- zadanie

Wielokąty (n>3). Okręgi. Inne figury płaskie. Zadania i twierdzenia z nimi związane. Geometria rzutowa na płaszczyżnie.
Awatar użytkownika
anulka
Użytkownik
Użytkownik
Posty: 173
Rejestracja: 20 paź 2005, o 15:19
Płeć: Kobieta
Lokalizacja: Lublin
Podziękował: 52 razy
Pomógł: 4 razy

Trapezy -- zadanie

Post autor: anulka » 24 wrz 2007, o 14:34

Witam

Otoz mam problem z pewnym zadaniem o to one:

1. W trojkat protokatny o przyprostokatnych dlugosci 6 i 8 wpisujemy prostokat w taki sposob ze dwa jego boki zawarte sa w przyprostokatnych a jeden z wierzcholkow lezy na przeciwprostokatnej . Zbadaj jakie powinny byc wymiary prostokata aby jego pole bylo mozliwe najwieksze.



2.Podstawy trapezu maja dlugosci 4 i 8 . Katy jakie tworza ramiona z dluzsza podstawa maja miary 30 stopni i 45 stopni. Oblicz pole trapezu

Za wszelka pomoc bede b. wdzieczna

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica
Podziękował: 11 razy
Pomógł: 1260 razy

Trapezy -- zadanie

Post autor: wb » 24 wrz 2007, o 14:41

2.
Do obliczenia pola brakuje wysokości h:

Podstawa dolna po narysowaniu obu wysokości wychodzących z wierzchołków podstawy górnej dzieli się na trzy odcinki, których suma wynosi 8:
\(\displaystyle{ h\sqrt3+4+h=8 \\ h(\sqrt3+1)=4 \\ h=\frac{4}{\sqrt3+1}=2(\sqrt3-1)}\)

i pole już łatwo...

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Trapezy -- zadanie

Post autor: scyth » 24 wrz 2007, o 14:44

1.
Umieść sobie trójkąt w początku układu współrzędnych. Przeciwprostokątna będzie fragmentem prostej, której równanie możesz wyznaczyć.
Chcesz znaleźć maksimum dla iloczynu x i y, z czego y leży na danej prostej w dodatniej ćwiartce. Policz zatem iloczyn - otrzymasz równanie kwadratowe ze względu na zmienną x, czyli parabolę. Szukany punkt będzie jej wierzchołkiem (powinnaś dostać x=4, y=3).

wb
Użytkownik
Użytkownik
Posty: 3506
Rejestracja: 20 sie 2006, o 12:58
Płeć: Mężczyzna
Lokalizacja: Brodnica
Podziękował: 11 razy
Pomógł: 1260 razy

Trapezy -- zadanie

Post autor: wb » 24 wrz 2007, o 14:49

a - bok prostokąta leżący na boku o długości 6,
b - drugi z boków prostokąta,

Z podobieństwa trójkątów:

\(\displaystyle{ \frac{8-a}{b}=\frac{a}{6-b} \\ ab=48-8b-6a+ab \\ a=8-\frac{4b}{3}}\)

\(\displaystyle{ P=ab=(8-\frac{4b}{3})b=8b-\frac{4b^2}{3}}\)

Powyższa funkcja kwadratowa ma wartość największą w wierzchołku, więc:
\(\displaystyle{ b=\frac{-8}{2\cdot (-\frac{4}{3})}=3 \\ a=8-\frac{4}{3}\cdot 3=4}\)

Awatar użytkownika
anulka
Użytkownik
Użytkownik
Posty: 173
Rejestracja: 20 paź 2005, o 15:19
Płeć: Kobieta
Lokalizacja: Lublin
Podziękował: 52 razy
Pomógł: 4 razy

Trapezy -- zadanie

Post autor: anulka » 24 wrz 2007, o 14:59

Dzieki wielkie za pomoc

ODPOWIEDZ