Oblicz całkę z definicji.

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
somerdeld_lo
Użytkownik
Użytkownik
Posty: 24
Rejestracja: 2 wrz 2017, o 01:01
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 6 razy

Oblicz całkę z definicji.

Post autor: somerdeld_lo » 16 lis 2017, o 19:24

Witam, mam problem z wyznaczeniem \(\displaystyle{ \int_{0}^{3} x \mbox{d}x}\) korzystając z definicji całki oznaczonej Riemanna. Na studium talent mieliśmy tylko i wyłącznie całkę f. wielomianowej na przedziale od \(\displaystyle{ \left\langle 0;1 \right\rangle}\) lub całkę f. trygonometrycznej na przedziale od \(\displaystyle{ \left\langle 0;\frac{\pi}{2} \right\rangle}\) (mowa o liczeniu z definicji). I wszystko jest fajnie i miło jeżeli operujemy na takich właśnie granicach całkowania. Z innymi mam niestety problem
Schemat mojego rozwiązania: biorę dowolny normalny ciąg podziałów (no i mamy problemo z \(\displaystyle{ n}\)-tą sumą całkową)

\(\displaystyle{ \sigma \left( n \right) = \frac{1}{2} \cdot \frac{1}{n}+ \frac{2}{n} \cdot \frac{1}{n}+...+ \frac{3n}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \left( 1+2+3...3n \right)}\)

Czy mój tok rozumowania jest poprawny, czy \(\displaystyle{ n}\)-ta suma całkowa zdefiniowana jest poprawnie? Jeżeli tak, co należy z tym dalej zrobić Proszę o pomoc.
Ostatnio zmieniony 16 lis 2017, o 19:45 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości: \langle, \rangle. Symbol mnożenia to \cdot.

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Re: Oblicz całkę z definicji.

Post autor: szw1710 » 16 lis 2017, o 20:02

Kiepsko piszesz tę sumę.

Podziel przedział \(\displaystyle{ [0,3]}\) na \(\displaystyle{ 3n}\) części, każda długości \(\displaystyle{ \frac{1}{n}}\). Jako punkty pośrednie weź punkty końcowe. Co dostaniesz?

ODPOWIEDZ