Suma zbiorów i kwantyfikator

Algebra zbiorów. Relacje, funkcje, iloczyny kartezjańskie... Nieskończoność, liczby kardynalne... Aksjomatyka.
login1977
Użytkownik
Użytkownik
Posty: 110
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 2 razy

Suma zbiorów i kwantyfikator

Post autor: login1977 » 16 lis 2017, o 17:17

Czy można zdefiniować należenie do sumy zbiorów \(\displaystyle{ x \in A \cup B}\) za pomocą kwantyfikatora dla każdego \(\displaystyle{ x}\) ?-- 16 lis 2017, o 18:23 --A czy sumę zbiorów można zdefiniować za pomocą kwantyfikatora?

Jan Kraszewski
Administrator
Administrator
Posty: 27304
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Re: Suma zbiorów i kwantyfikator

Post autor: Jan Kraszewski » 16 lis 2017, o 17:53

Co rozumiesz przez "zdefiniować za pomocą kwantyfikatora" ?

JK

login1977
Użytkownik
Użytkownik
Posty: 110
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 2 razy

Suma zbiorów i kwantyfikator

Post autor: login1977 » 16 lis 2017, o 17:58

\(\displaystyle{ x \in A \cup B \Leftrightarrow}\) dla każdego...
\(\displaystyle{ A \cup B=}\) ...dla każdego...
Chodzi o to czy kwantyfikator może występować w tych definicjach.

Jan Kraszewski
Administrator
Administrator
Posty: 27304
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Re: Suma zbiorów i kwantyfikator

Post autor: Jan Kraszewski » 16 lis 2017, o 18:13

Nie widzę racjonalnego sposobu wysłowienia tych definicji z użyciem kwantyfikatora.

JK

login1977
Użytkownik
Użytkownik
Posty: 110
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 2 razy

Suma zbiorów i kwantyfikator

Post autor: login1977 » 16 lis 2017, o 18:36

Niech \(\displaystyle{ X \neq 0}\) będzie przestrzenią i \(\displaystyle{ A \in X, B \in X}\). Wtedy \(\displaystyle{ x \in A \cup B \Leftrightarrow}\)( Dla każdego \(\displaystyle{ x \in X) ( x \in A \vee x \in B)}\)

-- 16 lis 2017, o 19:37 --

Czy taka definicja jest poprawna?

-- 16 lis 2017, o 19:41 --
login1977 pisze:Niech \(\displaystyle{ X \neq 0}\) będzie przestrzenią i \(\displaystyle{ A \in X, B \in X}\). Wtedy \(\displaystyle{ x \in A \cup B \Leftrightarrow}\)( Dla każdego \(\displaystyle{ x \in X) ( x \in A \vee x \in B)}\)

-- 16 lis 2017, o 19:37 --

Czy taka definicja jest poprawna?
-- 16 lis 2017, o 19:53 --Źle powyżej napisałem. Powinno być: Dla każdego \(\displaystyle{ A, B \in X}\)

Jan Kraszewski
Administrator
Administrator
Posty: 27304
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Re: Suma zbiorów i kwantyfikator

Post autor: Jan Kraszewski » 16 lis 2017, o 19:00

Na pewno nie ma być \(\displaystyle{ A, B \in X}\), co najwyżej \(\displaystyle{ A, B \subseteq X}\).

To, co próbujesz napisać jest na razie niepoprawne, w dodatku co chwila poprawiane. Napisz to jeszcze raz, użyj symbolu kwantyfikatora \(\displaystyle{ \forall}\) forall, a ja napiszę Ci, co jest niepoprawnie.

JK

login1977
Użytkownik
Użytkownik
Posty: 110
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 2 razy

Suma zbiorów i kwantyfikator

Post autor: login1977 » 16 lis 2017, o 19:12

Niech \(\displaystyle{ X \neq 0}\) będzie przestrzenią. Niech \(\displaystyle{ A, B \subseteq X}\). Wtedy
\(\displaystyle{ x \in A \cup B \Leftrightarrow \forall x \in A, B\left( x \in A \vee x \in B\right)}\)

Jan Kraszewski
Administrator
Administrator
Posty: 27304
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Suma zbiorów i kwantyfikator

Post autor: Jan Kraszewski » 16 lis 2017, o 19:33

login1977 pisze:\(\displaystyle{ x \in A \cup B \Leftrightarrow \forall x \in A, B\left( x \in A \vee x \in B\right)}\)
To popatrz, dlaczego jest źle. Przede wszystkim prawa strona jest niepoprawna składniowo, bo zupełnie nie wiadomo, co miałby oznaczać kwantyfikator \(\displaystyle{ \forall x \in A, B}\) - taki zapis jest niedopuszczalny. Dalej, używasz zmiennej \(\displaystyle{ x}\) w dwóch zupełnie różnych znaczeniach - po lewej stronie równoważności jest to zmienna wolna, a po prawej związana. Samo to nie dyskwalifikuje Twojego zapisu, ale stwarza Ci złudzenie, że jest jakiś związek pomiędzy tymi \(\displaystyle{ x}\)-ami. Możesz spróbować to poprawić, a ja Ci napiszę, co dalej jest źle...

JK

login1977
Użytkownik
Użytkownik
Posty: 110
Rejestracja: 27 paź 2017, o 17:49
Płeć: Mężczyzna
Pomógł: 2 razy

Suma zbiorów i kwantyfikator

Post autor: login1977 » 16 lis 2017, o 20:00

Rozumiem że tak będzie dobrze:

\(\displaystyle{ x \in A \cup B \Leftrightarrow \left( x \in A \vee x \in B\right)}\)
\(\displaystyle{ A \cup B=\left\{ x: x \in A \vee x \in B\right\}}\)-- 16 lis 2017, o 21:16 --Moje niezrozumienie wynika z trochę z tego że próbuję zdefiniować sumę zbiorów analogicznie do równości i zawierania. Równość i zawieranie to relacje a suma to działanie na zbiorach.

Jan Kraszewski
Administrator
Administrator
Posty: 27304
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4597 razy

Re: Suma zbiorów i kwantyfikator

Post autor: Jan Kraszewski » 16 lis 2017, o 21:03

Tak, teraz jest dobrze.

JK

ODPOWIEDZ