Wzór ogólny po wzorze rekurencyjnym

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Awatar użytkownika
VirtualUser
Użytkownik
Użytkownik
Posty: 443
Rejestracja: 2 wrz 2017, o 11:13
Płeć: Mężczyzna
Podziękował: 113 razy
Pomógł: 15 razy

Wzór ogólny po wzorze rekurencyjnym

Post autor: VirtualUser » 15 lis 2017, o 20:58

Witam, mam takie zadanie:
Podaj wzór na wyraz ogólny ciągu \(\displaystyle{ (a_n)}\) danego wzorem:
\(\displaystyle{ a_1 =2 \wedge a_{n+1} = a_{n} - \frac{1}{n(n+1)} }}\)
Generalnie wiem, że mnóstwo osób robi te zadania "na czuja". Tzn. wylicza się początkowe wyrazy i w większości przypadków łatwo idzie dostrzec wzór. Ale jak ten wzór ogólny wyliczyć? Tylko na podstawie tych danych?
Będę bardzo wdzięczny za wyjaśnienie, pozdrawiam.

Odpowiedź:
\(\displaystyle{ a_n = \frac{n+1}{n}}\)
Ostatnio zmieniony 15 lis 2017, o 21:07 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Temat umieszczony w złym dziale.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15212
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5047 razy

Wzór ogólny po wzorze rekurencyjnym

Post autor: Premislav » 15 lis 2017, o 21:04

Zauważ, że \(\displaystyle{ \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}}\)
Następnie zaobserwuj, że dużo rzeczy się skróci.
Ogólnej metody nie znam.

-- 15 lis 2017, o 22:05 --

Chociaż w sumie to jedną znam, funkcje tworzące, ale nie sądzę, że je znasz. Do poczytania np. tutaj:
https://www.math.upenn.edu/~wilf/gfology2.pdf

ODPOWIEDZ