Rozwiązanie układu równań w ciele reszt - dobrze?

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
Scrub
Użytkownik
Użytkownik
Posty: 79
Rejestracja: 4 paź 2016, o 18:55
Płeć: Mężczyzna
Podziękował: 36 razy

Rozwiązanie układu równań w ciele reszt - dobrze?

Post autor: Scrub » 11 lis 2017, o 20:44

Rozwiązuję nad ciałem reszt \(\displaystyle{ Z_{5}}\) układ w postaci \(\displaystyle{ AX=B}\), gdzie
\(\displaystyle{ A}\) - macierz \(\displaystyle{ 3x3}\),
\(\displaystyle{ X}\) - wektor niewiadomych,
\(\displaystyle{ B}\) - kolumna wyrazów wolnych.

Macierz rozszerzona układu:
\(\displaystyle{ \left[\begin{array}{cccc}3&1&1&|0\\1&2&2&|0\\4&3&4&|1\end{array}\right]}\)
Doprowadzam do
\(\displaystyle{ \left[\begin{array}{cccc}1&2&0&|3\\0&0&1&|1\\0&0&0&|0\end{array}\right]}\)
Czyli zbiór rozwiązań ma taką postać?
\(\displaystyle{ \left[\begin{array}{c}x_{1}=3-2x_{2}\\x_{2}=x_{2}\\x_{3}=1\end{array}\right]}\)
(\(\displaystyle{ x_{2}}\) zostaje parametrem)
Pytam, bo to co mam zapisane nie zgadza się z tym co wyliczyłem, a jak widać nie jest to zadanie z kosmosu. Może bania mi się już przegrzewa.

Awatar użytkownika
lukas1929
Użytkownik
Użytkownik
Posty: 45
Rejestracja: 14 paź 2017, o 12:43
Płeć: Mężczyzna
Lokalizacja: Haugesund
Podziękował: 1 raz
Pomógł: 9 razy

Rozwiązanie układu równań w ciele reszt - dobrze?

Post autor: lukas1929 » 12 lis 2017, o 01:05

Scrub pisze:Pytam, bo to co mam zapisane nie zgadza się z tym co wyliczyłem, a jak widać nie jest to zadanie z kosmosu. Może bania mi się już przegrzewa.
Ja to przeliczyłem i wyszło mi tyle samo czyli:

\(\displaystyle{ x_1 + 2x_2 = -2}\)

\(\displaystyle{ x_3 = 1}\)

Odp. \(\displaystyle{ [-2-2t,t,1]^T = [3-2t,t,1]^T}\)

.

ODPOWIEDZ